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Road infrastructure in climate-sensitive regions such as the Southeastern United States 
faces increasing risks under climate change. Intense rainfall, hurricanes, storm surges, and 
freeze–thaw cycles accelerate pavement deterioration and disrupt roadway functionality. 
Developing adaptive and transparent maintenance strategies is therefore essential for 
sustaining performance and enhancing resilience. Current pavement management systems 
rely on static knowledge bases and empirical rules, which limits flexibility and interpretability. 
This study proposes a data-driven framework that combines Large Language Models (LLMs) 
with Retrieval-Augmented Generation (RAG) to generate context-aware and interpretable 
pavement maintenance strategies. A comprehensive knowledge base was constructed using 
Long-Term Pavement Performance (LTPP) data, Florida Department of Transportation 
manuals, regional climate information, and historical maintenance records. Structured 
indicators such as Annual Average Daily Truck Traffic, precipitation, and freeze index guided 
the retrieval process. Given pavement distress, climate, and traffic conditions, the RAG 
module retrieved relevant cases and technical standards, enabling the LLM to produce 
evidence-based recommendations.  Validation on 30 pavement sections in Florida achieved 
an exact prediction accuracy of 76.7% with 23 correct classifications. Predictions were 
dominated by Mill and Overlay (15 cases, 50%) and Surface Treatment (9 cases, 30%), 
followed by Patch Repair (3 cases, 10%), Rigid Pavement Repair (2 cases, 6.7%), and Thin 
Overlay (1 case, 3.3%). Crack Sealing and Recycled Treatment were not predicted. The 
framework showed strong performance for structural and surface renewal actions, while 
preventive strategies remain underrepresented. Generated reports included condition 
summaries, historical references, recommendations, and assumptions, which improved 
interpretability and partially reduced the risk of hallucination compared with traditional 
black-box models. The proposed framework provides a replicable decision-support tool that 
improves accuracy, adaptability, and interpretability in pavement management, contributing 
to infrastructure resilience and sustainable transportation planning. 
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 Highlights  
• Develops a retrieval-augmented knowledge base integrating multi-dimensional LTPP data 

on climate, traffic, performance, and maintenance. 
• Implements a standardized classification scheme that consolidates 23 actions into 7 

categories, enhancing balance and interpretability.  
• Demonstrates an LLM-RAG framework that generates age-sensitive, interpretable, and 

case-informed pavement maintenance recommendations. 
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1 Introduction  
Pavement infrastructure is a critical component of global transportation networks, yet pavement 
maintenance management systems (PMS) face mounting challenges from aging assets, climate 
variability, and increasing traffic loads (Faris et al., 2023; Piryonesi & El-Diraby, 2021). Traditional PMS 
relies on deterministic deterioration models, expert judgment, and decision trees to schedule 
Maintenance and Repair (M&R) activities (Basnet et al., 2023; Khichad & Vishwakarma, 2024). While 
these approaches provide baseline functionality, they often lack adaptability, consistency, and 
scalability under evolving conditions (Gong, Dong, Huang, & Jia, 2015; Marcelino, Antunes, Fortunato, 
& Gomes, 2021). 

The Long-Term Pavement Performance (LTPP) program, initiated in the 1980s, has transformed 
pavement research by providing over 30 years of systematically collected performance, climate, and 
traffic data across diverse environments (Chen, Deng, Li, & Shi, 2023; Younos, Abd El-Hakim, El-
Badawy, & Afify, 2020) Although widely used in deterioration and prediction models, most studies 
emphasize prediction accuracy rather than interpretable decision support that practitioners can 
directly implement. 

Recent advances in artificial intelligence, particularly Large Language Models (LLMs) and Retrieval-
Augmented Generation (RAG), present new opportunities. LLMs can generate context-aware, human-
interpretable outputs, while RAG grounds these outputs in verified engineering knowledge, mitigating 
black-box concerns (Wang, Liu, Lu, & Jia, 2025; Siddharth & Luo, 2024). Unlike traditional case-based 
reasoning (CBR), which relies solely on similarity-based retrieval, the LLM-RAG approach combines 
generative reasoning with historical precedents to deliver transparent and traceable recommendations. 

Despite advances in predictive modeling and artificial intelligence applications, current PMS still lack 
an integrated framework that can: (1) leverage historical cases from comprehensive datasets such as 
LTPP; (2) provide transparent, explainable recommendations consistent with engineering judgment; (3) 
generate standardized, professional outputs suitable for integration with agency workflows. 

To address these shortcomings, this study proposes a LLM-RAG framework that embeds 
multidimensional pavement records into a vector database, retrieves relevant historical cases, and 
generates professional-grade maintenance reports using structured LLM prompts. Its contributions are 
reflected in three aspects: 

1) Constructing a retrieval-enhanced knowledge base that integrates climate, traffic, structural, and 
performance attributes from LTPP. 

2) Implementing a standardized seven-category maintenance classification system to consolidate 
different historical processing methods into actionable categories consistent with industry 
practices. 

3) Demonstrating an explainable recommendation framework that has been validated against 
historical engineering decisions, highlighting its potential for real-world application. 

2 Literature Review  

2.1Pavement Performance Prediction with LTPP Data 

Numerous studies have leveraged the LTPP dataset to build pavement deterioration and performance 
models. Gong et al. (2015) evaluated preventive maintenance treatments across multiple climates, 
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showing their long-term benefits. Marcelino et al. (2021) applied machine learning to forecast pavement 
conditions, marking a shift from deterministic to data-driven models. Younos et al. (2020) and Zhang & 
Wang (2023) further integrated traffic, climate, and geospatial analyses, identifying key factors 
influencing rutting and cracking. More recently, Chen et al. (2023) employed a long-and-short-term 
memory network with attention mechanisms to achieve high-accuracy predictions, highlighting the 
growing importance of deep learning with large-scale LTPP data. Despite these advancements, most 
models prioritize prediction accuracy over decision-making interpretability. 

2.2 Case-Based Reasoning and Historical Knowledge in Maintenance Decisions  

Case-Based Reasoning (CBR) has long been recognized as a promising approach for maintenance 
planning. Chou (2008) introduced an AHP-based CBR system for pavement cost estimation, while  L. Li 
& Wang (2012) applied CBR to rehabilitation strategy selection. Abu Dabous et al. (2022) advanced this 
line of research by integrating CBR with Random Forests to improve case retrieval accuracy, 
demonstrating robust performance with LTPP data. Similar approaches were applied in building retrofit, 
where Y. Li, Du, & Kumaraswamy (2024) confirm the broader applicability of case-informed reasoning. 
These studies underscore the value of leveraging historical maintenance records for decision support, 
though scalability and integration with modern AI remain underexplored. 

2.3 Retrieval-Augmented Generation in Engineering Domains 

The RAG framework has recently gained traction in engineering knowledge management. Siddharth & 
Luo (2024) demonstrated its use in design knowledge retrieval, while Wang et al. (2025)developed a 
hybrid RAG framework combining embeddings and graph search for building lifecycle queries. These 
works highlight RAG’s ability to ground LLM responses in verified domain knowledge, mitigating 
hallucinations. Applications in infrastructure remain nascent, though early examples, Deng et al. (2024) 
show that RAG-enhanced LLMs can act as maintenance advisors, converting predictive alerts into 
prescriptive recommendations. 

2.4 Artificial Intelligence and LLMs in Pavement Maintenance 

AI has steadily advanced in pavement management, from computer vision-based maintenance 
detection (Xiong, Zayed, & Abdelkader, 2024) to AI-enabled strategy reviews (Basnet et al., 2023). The 
recent introduction of LLMs into pavement maintenance is groundbreaking. Oguntoye et al. (2025) 
employed ChatGPT-4 to classify M&R records and improve prediction models, while Deng et al. (2024) 
used an LLM agent with RAG to generate maintenance recommendations. These pioneering efforts 
illustrate the feasibility of LLM-driven maintenance systems, though systematic frameworks that 
integrate structured datasets like LTPP with RAG-enhanced LLM reasoning are still lacking. 
The literature reveals a clear evolution in pavement management approaches, from deterministic 
models to sophisticated AI systems. However, three critical gaps persist:(1) While LTPP-based models 
provide predictive capabilities and CBR systems offer precedent-based reasoning, no existing 
framework systematically integrates these complementary approaches with modern AI capabilities. (2) 
Advanced machine learning models achieve high prediction accuracy but lack the transparency 
required for professional engineering decision-making, particularly in maintenance strategy selection, 
where justification is crucial. (3)Existing AI applications in pavement management generate ad-hoc 
outputs that are difficult to integrate with established pavement management workflows and reporting 
standards. This study addresses these gaps by developing an integrated LLM-RAG framework that 
combines the predictive power of LTPP data with the interpretability of case-based reasoning and the 
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reasoning capabilities of modern AI, generating standardized professional outputs suitable for practical 
implementation. 

3 Methodology  
This study adopts a quantitative, data-driven research design to develop and validate a Retrieval-
Augmented Generation (RAG) enhanced Large Language Model (LLM) for pavement maintenance 
strategy recommendation. Unlike traditional decision support systems, which rely on deterministic 
deterioration models and rule-based decision trees, this framework leverages historical precedents and 
AI reasoning to provide transparent, interpretable, and standardized recommendations. The 
methodology consists of three stages: (i) data collection and preprocessing, (ii) development of the 
RAG-enhanced LLM framework, and (iii) evaluation through training and validation experiments. Figure 
1 provides an overview of the methodological framework, while the following subsections describe each 
component in detail. 

3.1 Data Collection and Process 

The dataset used in this study is derived from the Long-Term Pavement Performance (LTPP) program, a 
comprehensive pavement monitoring database covering road sections across North America. To 
support the development of the proposed framework, five modules were selected from the LTPP dataset: 
pavement basic information, climate, traffic, pavement performance, and maintenance records. 
The variables were carefully chosen to represent the key factors influencing pavement condition and 
maintenance decisions. Specifically, the basic information module provides state code, pavement type, 
construction number, and structural layer material and thickness. The climate module includes 
precipitation, freeze–thaw cycles, temperature indicators, wind speed, humidity, and solar radiation. 
The traffic module covers annual average daily truck traffic (AADTT) and cumulative axle load measures 
(kESAL). The performance module contains pavement roughness (MRI/IRI), rutting, and multiple 
cracking indices for both flexible (AC) and rigid (PCC) pavements. Finally, the maintenance module 
records maintenance type, thickness, material, and layer information. A detailed variable dictionary is 
provided in Table 1 (Appendix). 

To reduce data sparsity and improve robustness, the 23 original maintenance actions in the LTPP 
dataset were consolidated into seven standardized categories: Crack Sealing, Patch Repair, Surface 
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair. This 
consolidation was based on technical characteristics and functional similarity, aligned with FDOT 
practices and AASHTO guidelines, ensuring that the categories remain operationally meaningful while 
minimizing noise from rarely applied treatments. A mapping of original actions to the seven categories 
is shown in Table 2 (Appendix). 

To reduce data sparsity and improve robustness, the 23 original maintenance actions in the LTPP 
dataset were consolidated into seven standardized categories: Crack Sealing, Patch Repair, Surface 
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair. This 
consolidation was based on technical characteristics and functional similarity, aligned with FDOT 
practices and AASHTO guidelines, ensuring that the categories remain operationally meaningful while 
minimizing noise from rarely applied treatments. A mapping of original actions to the seven categories 
is shown in Table 2 (Appendix). 

Table 3 Pavement type distribution in training and validation sets 

Pavement Type Historical Cases Validation Cases Total 
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AC 95 27 122 

PCC 15 3 18 

Total 110 30 140 

3.2 Development of RAG-enhanced Pavement Maintenance LLM 

Intelligent pavement maintenance decision-making has become a critical requirement for ensuring 
transportation infrastructure resilience under climate change and traffic loading. This research 
proposes an LLM-based pavement maintenance framework built upon RAG. Figure 1 illustrates the 
overall workflow of the proposed RAG-enhanced pavement maintenance framework. Historical 
pavement records, including basic information, climate, traffic, performance, and maintenance 
features, are embedded and stored in a vector database. When a new pavement case is queried, the 
system performs a similarity search and metadata filtering to identify the most relevant historical cases. 
These retrieved cases, along with the contextual features of the current pavement section, are then 
passed into the LLM through a structured prompt. The LLM processes the input and generates a 
standardized maintenance recommendation report that specifies the most suitable maintenance 
category, confidence score, technical justification, and assumptions or limitations. This workflow 
ensures that the framework leverages both quantitative data and historical precedents, producing 
recommendations that are interpretable, transparent, and aligned with engineering practice. The 
framework is composed of three modules: (i) Vector Database, (ii) Retrieval Component, and (iii) 
Generation Component. 

 

Figure 1. Framework of the RAG-enhanced LLM for Pavement Maintenance Strategy Generation 

3.2.1 Vector Database 

The vector database, established from historical pavement sections and their maintenance records, 
acts as an external knowledge base for the LLM. It facilitates the matching of historical cases with 
current pavement conditions by embedding features from five modules: basic information, climate, 
traffic, pavement performance, and maintenance records. Specifically, the database integrates 
variables such as pavement type, age, base/subbase materials, precipitation, freeze–thaw cycles, 
AADTT, rutting, and cracking indices, as summarized in Table 1 (Appendix). 
To reduce sparsity and complexity, the original 23 maintenance actions in the LTPP dataset are 
consolidated into seven standardized categories, including —Crack Sealing, Patch Repair, Surface 
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair, based on 
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technical characteristics and functional similarity (Table 2 (Appendix)). This classification ensures 
balanced data distribution, enhances prediction robustness, and aligns with practical maintenance 
management practices. 

3.2.2 Retrieval Component 

The retrieval component is responsible for similarity search. Each new pavement case is processed into 
a compact document embedding that captures its essential features. Using cosine similarity as the 
primary metric, the system retrieves the top-K most relevant historical cases (K=3 in this study). Both 
the feature vectors and contextual metadata (e.g., pavement type, age, climate conditions) of the 
retrieved cases are passed to the LLM as comparative benchmarks.                                                                                                                                                         

3.2.3 Generation Component  

The generation component is developed to consist of a structured prompt template and the LLM. The 
engineered prompt template guides the LLM by providing explicit instructions that shape both input 
processing and output generation. These instructions ensure consistency, interpretability, and 
technical alignment with pavement management practices. 
Table 4 (Appendix) illustrates the designated prompt template for pavement maintenance 
recommendations. The parameters contained in the braces {} are placeholders that dynamically change 
according to the input data. Initially, the system captures and organizes the basic information of the 
pavement section. This includes the section ID, year of record, pavement type, age, and structural 
characteristics, as well as climate indicators (temperature, precipitation, freeze–thaw cycles), traffic 
loadings (ESAL, AADTT), and current performance measures such as roughness, rutting, and cracking. 
In addition to these direct indicators, the template incorporates relevant historical maintenance cases 
retrieved from the knowledge base. This comparative approach enriches the context for the LLM, 
enabling it to leverage both quantitative thresholds and past precedents to improve decision-making. 
To ensure clarity and transparency, the LLM is instructed to generate its outputs in a structured JSON 
format. The output dictionary contains several key elements: 
(1) Primary Maintenance Category: One of the seven standardized actions. 
(2) Confidence Score:  A numerical measure of certainty in the prediction. 
(3) Technical Justification: A concise explanation linking the recommendation to climate, traffic, 
performance conditions, and historical references. 
(4) Assumptions and Limitations: Explicit notes on data quality, missing variables, or the need for field 
verification. 
This framework ensures that the recommendations are not only data-driven but also professionally 
interpretable, providing engineers with transparent and context-aware maintenance strategies that 
align with best practices. 

3.3 Evaluation 

The framework was validated on 30 pavement sections using accuracy of predicted maintenance 
categories as the primary metric. Results were compared with historical decisions, and incorrect 
predictions were analyzed to identify common patterns. While the dataset size constrains statistical 
generalization, the evaluation demonstrates the feasibility, interpretability, and practical alignment of 
the proposed framework, laying the foundation for future large-scale testing. 
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4 Results 
The RAG+LLM framework was validated on 30 pavement sections and achieved an accuracy of 76.7% 
(23/30 cases), comparable to baseline rule-based decision matrices. Reports were structured and 
interpretable, including condition summaries, historical case references, technical justifications, and 
explicit assumptions, ensuring transparency and practical usability. 

Predicted categories showed a preference for structural and renewal measures: mill and overlay (15, 
50%), surface treatment (9, 30%), patch repair (3, 10%), rigid repair (2, 6.7%), and thin overlay (1, 3.3%). 
Crack sealing (0/2) and recycled treatment (0/1) were never predicted, and the thin overlay was also 
misclassified (0/2 correct). These results highlight the framework’s strength in mainstream practices 
but its limited ability to recommend preventive or innovative actions. 

Error analysis showed that most of the 7 misclassifications occurred in underrepresented categories, 
confirming the impact of dataset imbalance. Additionally, borderline performance thresholds (e.g., 
roughness and rutting) contributed to errors. Environmental and traffic variables influenced outcomes 
logically: high rainfall, frequent freeze–thaw, and heavy traffic increased structural recommendations, 
while low-traffic sections received more preventive or surface treatments. Performance thresholds also 
acted as decisive cutoffs, with higher roughness/rutting leading to structural interventions. Each case 
was processed in under 5 seconds, showing good computational efficiency. 

5 Discussion  
The framework aligns with established pavement management practices: overlays dominate mid-life 
pavements, while patch and rigid repair address localized or structural needs. However, preventive 
measures such as crack sealing and thin overlays were not predicted, and recycled treatments were 
absent. This reflects both imbalanced LTPP data and the framework’s reliance on performance 
thresholds, which bias results toward corrective actions once deterioration is evident. 

This limitation is critical for practice, as agencies rely on preventive strategies to extend service life and 
optimize budgets. Without such coverage, the framework risks favoring costlier interventions. Future 
work should address this by balancing training data, refining retrieval weighting, and incorporating 
lifecycle stage constraints to improve preventive treatment recognition. 

Despite this gap, the framework showed strong interpretability and transparency, clearly explaining 
recommendations and assumptions. Combined with its computational efficiency, this highlights 
potential for integration into PMS workflows. 

6 Conclusions 
This study developed and validated an RAG-LLM framework for standardized pavement maintenance 
strategy generation. Key findings are: 

1. 76.7% prediction accuracy across 30 validation cases, comparable to traditional PMS. 

2. Predictions dominated by mill and overlay (50%) and surface treatment (30%), consistent with 
practice. 

3. Decisions logically incorporated age, climate, traffic, and performance indicators. 

4. Reports were structured, interpretable, and supported by historical case references. 
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Limitations include the absence of crack sealing (0/2), thin overlay (0/2), and recycled treatments (0/1), 
simplified environmental and traffic inputs, and a small validation set. Future work should expand 
preventive and innovative coverage, refine inputs, and scale validation. 

Overall, the framework demonstrates strong potential for intelligent, interpretable, and standardized 
pavement maintenance planning, with both academic and practical value. 
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7 Appendix  
Table1Variable dictionary 

Type Name of Input Variable Variable Source 

Basic Information 

State Code STATE_CODE 

Pavement Age  Calculation based on CONSTRUCTION_NO 

Pavement Type AC / PCC / Combination 

Material of Base MATL_CODE_EXP 

Material of Subbase MATL_CODE_EXP 

Thickness of 
Base/Subbase 

REPR_THICKNESS 

Climate Information 

Precipitation PRECIPITATION 

Freeze–Thaw Cycles FREEZE_THAW 

Thermal Indicators 
TEMP_AVG, TEMP_MEAN_AVG, DAYS_ABOVE_32_C, DAYS_BELOW_0_C, 
FREEZE_INDEX 

Wind WIND_VELOCITY_AVG, WIND_VELOCITY_MAX 

Humidity HUM_AVG_AVG, HUM_AVG_MAX, HUM_AVG_MIN 

Radiation SHORTWAVE_SURFACE_AVG, EMISSIVITY_AVG 

Traffic Information 

AADTT (Annual Average 
Daily Truck Traffic) 

AADTT_ALL_TRUCKS_TREND 

kESAL (Cumulative 
Equivalent Single Axle 
Loads) 

ANNUAL_ESAL_TREND, ANNUAL_GESAL_TREND 

Roughness (IRI/MRI) MRI 
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Pavement 
Performance 

Rutting MAX_MEAN_DEPTH_1_8 

Cracking – Flexible (AC) 
HPMS16_CRACKING_PERCENT_AC, MEPDG_CRACKING_PERCENT_AC, 
MEPDG_TRANS_CRACK_LENGTH_AC, MEPDG_LONG_CRACK_LENGTH_AC, 
ME_PERCENT_WHEEL_PATH_CRACK 

Cracking – Rigid (JPCC) 
HPMS16_CRACKING_PERCENT_JPCC, MEPDG_CRACKING_PERCENT_JPCC, 
ME_PERCENT_CRACKED_SLABS 

Maintenance 
Information 

Maintenance Type Maintenance Category 

Maintenance Thickness IMP_THICKNESS 

Maintenance Material MATL_CODE_EXP 

Maintenance Layer LAYER_NO 

 

Table2 simplified maintenance classification. 

Maintenance Measure Specific Measure 

Crack Sealing 

Transverse Joint Sealing 

Lane–Shoulder Longitudinal Joint Sealing 

Crack Sealing 

Manual Premix Spot Patch 

Patch Potholes (Hand Spread, Compacted with Truck) 

Full Depth Patch of AC Pavement 

Partial Depth Patching of PCC Pavement Other Than at Joint 

Full Depth Patching of PCC Pavement Other Than at Joint 

Surface Treatment 

Aggregate Seal Coat 

Slurry Seal Coat 

Surface Treatment – Single Layer 

Surface Treatment – Double Layer 

Thin Overlay 
Asphalt Concrete Overlay 

Thin Hot-Mix Overlay 

Recycled Treatment 

Hot-Mix Recycled Asphalt Concrete Overlay 

Warm-Mix Recycled Asphalt Concrete Overlay 

Cold In-Place Recycling 

Mill and Overlay 

Mill Off AC and Overlay 

Mill Existing Pavement and Overlay with Hot-Mix Recycled AC 

Mill Existing Pavement and Overlay with Warm-Mix Recycled AC 

Rigid Pavement Repair 

PCC Slab Replacement 

Full Depth Transverse Joint Repair Patch 

Grinding Surface 

 

Table 4 The prompt for pavement maintenance recommendations 

Prompt 
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{ 
  "Section ID": "{SHRP_ID} _{ID}_{Year}", 
  "Year": "{Year}", 
  "Report Date":"{current date}", 
  "Condition Summary": { 
    "Climate Traffic": "Comprehensive 2-3 sentence analysis of climate conditions (temperature, precipitation, freeze-thaw) and traffic 
loading (ESAL, AADTT) impacts on pavement deterioration.", 
    "Roughness Deterioration": "Detailed assessment of current performance status including MRI, rutting depth, and cracking 
patterns with performance thresholds evaluation.", 
    "Pavement Context": "Summary of pavement type, age, structural characteristics, and maintenance history context affecting 
treatment selection." 
  }, 
  "Historical Reference": { 
    "Relevant cases ID": ["List of 3 most relevant historical case IDs"], 
    "Relevant Records Summary": "Summary of historical cases with similar pavement type, age, climate, and traffic conditions, 
focusing on applied treatments and effectiveness.", 
    "Relevance Reason": "Technical explanation of why selected cases are applicable, including quantitative similarity in key 
parameters (age ±5 years, similar climate zone, comparable traffic loading)." 
  }, 
  "Recommended Maintenance Plan": { 
    "Maintenance": [ 
      "SELECT EXACTLY ONE FROM: Crack Sealing, Surface Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, Patch 
Repair, Rigid Pavement Repair”], 
    "Justification": "Technical justification linking current conditions to recommended treatment, referencing performance thresholds, 
historical case outcomes, and engineering best practices. Include quantitative analysis where possible.", 
    "Age_Appropriateness": "Specific analysis of why the recommended treatment is suitable for the pavement's current age, 
considering remaining service life and cost-effectiveness." 
  }, 
  "Assumptions Limitations": "Clear statement of analysis assumptions, data limitations, and recommendations for field verification 
or additional testing." 
} 
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