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Abstract

Road infrastructure in climate-sensitive regions such as the Southeastern United States
faces increasing risks under climate change. Intense rainfall, hurricanes, storm surges, and
freeze-thaw cycles accelerate pavement deterioration and disrupt roadway functionality.
Developing adaptive and transparent maintenance strategies is therefore essential for
sustaining performance and enhancing resilience. Current pavement management systems
rely on static knowledge bases and empirical rules, which limits flexibility and interpretability.
This study proposes a data-driven framework that combines Large Language Models (LLMs)
with Retrieval-Augmented Generation (RAG) to generate context-aware and interpretable
pavement maintenance strategies. A comprehensive knowledge base was constructed using
Long-Term Pavement Performance (LTPP) data, Florida Department of Transportation
manuals, regional climate information, and historical maintenance records. Structured
indicators such as Annual Average Daily Truck Traffic, precipitation, and freeze index guided
the retrieval process. Given pavement distress, climate, and traffic conditions, the RAG
module retrieved relevant cases and technical standards, enabling the LLM to produce
evidence-based recommendations. Validation on 30 pavement sections in Florida achieved
an exact prediction accuracy of 76.7% with 23 correct classifications. Predictions were
dominated by Mill and Overlay (15 cases, 50%) and Surface Treatment (9 cases, 30%),
followed by Patch Repair (3 cases, 10%), Rigid Pavement Repair (2 cases, 6.7%), and Thin
Overlay (1 case, 3.3%). Crack Sealing and Recycled Treatment were not predicted. The
framework showed strong performance for structural and surface renewal actions, while
preventive strategies remain underrepresented. Generated reports included condition
summaries, historical references, recommendations, and assumptions, which improved
interpretability and partially reduced the risk of hallucination compared with traditional
black-box models. The proposed framework provides a replicable decision-support tool that
improves accuracy, adaptability, and interpretability in pavement management, contributing
to infrastructure resilience and sustainable transportation planning.

Keywords: Pavement Maintenance, Large Language Model (LLM), Retrieval-Augmented
Generation (RAG), LTPP, Climate Resilience, Data-driven Decision Making, Florida

Highlights

e Develops a retrieval-augmented knowledge base integrating multi-dimensional LTPP data
on climate, traffic, performance, and maintenance.

e Implements a standardized classification scheme that consolidates 23 actions into 7
categories, enhancing balance and interpretability.

e Demonstrates an LLM-RAG framework that generates age-sensitive, interpretable, and
case-informed pavement maintenance recommendations.
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1 Introduction

Pavement infrastructure is a critical component of global transportation networks, yet pavement
maintenance management systems (PMS) face mounting challenges from aging assets, climate
variability, and increasing traffic loads (Faris et al., 2023; Piryonesi & El-Diraby, 2021). Traditional PMS
relies on deterministic deterioration models, expert judgment, and decision trees to schedule
Maintenance and Repair (M&R) activities (Basnet et al., 2023; Khichad & Vishwakarma, 2024). While
these approaches provide baseline functionality, they often lack adaptability, consistency, and
scalability under evolving conditions (Gong, Dong, Huang, & Jia, 2015; Marcelino, Antunes, Fortunato,
& Gomes, 2021).

The Long-Term Pavement Performance (LTPP) program, initiated in the 1980s, has transformed
pavement research by providing over 30 years of systematically collected performance, climate, and
traffic data across diverse environments (Chen, Deng, Li, & Shi, 2023; Younos, Abd El-Hakim, El-
Badawy, & Afify, 2020) Although widely used in deterioration and prediction models, most studies
emphasize prediction accuracy rather than interpretable decision support that practitioners can
directly implement.

Recent advances in artificial intelligence, particularly Large Language Models (LLMs) and Retrieval-
Augmented Generation (RAG), present new opportunities. LLMs can generate context-aware, human-
interpretable outputs, while RAG grounds these outputs in verified engineering knowledge, mitigating
black-box concerns (Wang, Liu, Lu, & Jia, 2025; Siddharth & Luo, 2024). Unlike traditional case-based
reasoning (CBR), which relies solely on similarity-based retrieval, the LLM-RAG approach combines
generative reasoning with historical precedents to deliver transparent and traceable recommendations.

Despite advances in predictive modeling and artificial intelligence applications, current PMS still lack
an integrated framework that can: (1) leverage historical cases from comprehensive datasets such as
LTPP; (2) provide transparent, explainable recommendations consistent with engineering judgment; (3)
generate standardized, professional outputs suitable for integration with agency workflows.

To address these shortcomings, this study proposes a LLM-RAG framework that embeds
multidimensional pavement records into a vector database, retrieves relevant historical cases, and
generates professional-grade maintenance reports using structured LLM prompts. Its contributions are
reflected in three aspects:

1) Constructing a retrieval-enhanced knowledge base that integrates climate, traffic, structural, and
performance attributes from LTPP.

2) Implementing a standardized seven-category maintenance classification system to consolidate
different historical processing methods into actionable categories consistent with industry
practices.

3) Demonstrating an explainable recommendation framework that has been validated against
historical engineering decisions, highlighting its potential for real-world application.

2 Literature Review

2.1Pavement Performance Prediction with LTPP Data

Numerous studies have leveraged the LTPP dataset to build pavement deterioration and performance
models. Gong et al. (2015) evaluated preventive maintenance treatments across multiple climates,
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showingtheir long-term benefits. Marcelino et al. (2021) applied machine learning to forecast pavement
conditions, marking a shift from deterministic to data-driven models. Younos et al. (2020) and Zhang &
Wang (2023) further integrated traffic, climate, and geospatial analyses, identifying key factors
influencing rutting and cracking. More recently, Chen et al. (2023) employed a long-and-short-term
memory network with attention mechanisms to achieve high-accuracy predictions, highlighting the
growing importance of deep learning with large-scale LTPP data. Despite these advancements, most
models prioritize prediction accuracy over decision-making interpretability.

2.2 Case-Based Reasoning and Historical Knowledge in Maintenance Decisions

Case-Based Reasoning (CBR) has long been recognized as a promising approach for maintenance
planning. Chou (2008) introduced an AHP-based CBR system for pavement cost estimation, while L. Li
& Wang (2012) applied CBR to rehabilitation strategy selection. Abu Dabous et al. (2022) advanced this
line of research by integrating CBR with Random Forests to improve case retrieval accuracy,
demonstrating robust performance with LTPP data. Similar approaches were applied in building retrofit,
where Y. Li, Du, & Kumaraswamy (2024) confirm the broader applicability of case-informed reasoning.
These studies underscore the value of leveraging historical maintenance records for decision support,
though scalability and integration with modern Al remain underexplored.

2.3 Retrieval-Augmented Generation in Engineering Domains

The RAG framework has recently gained traction in engineering knowledge management. Siddharth &
Luo (2024) demonstrated its use in design knowledge retrieval, while Wang et al. (2025)developed a
hybrid RAG framework combining embeddings and graph search for building lifecycle queries. These
works highlight RAG’s ability to ground LLM responses in verified domain knowledge, mitigating
hallucinations. Applications in infrastructure remain nascent, though early examples, Deng et al. (2024)
show that RAG-enhanced LLMs can act as maintenance advisors, converting predictive alerts into
prescriptive recommendations.

2.4 Artificial Intelligence and LLMs in Pavement Maintenance

Al has steadily advanced in pavement management, from computer vision-based maintenance
detection (Xiong, Zayed, & Abdelkader, 2024) to Al-enabled strategy reviews (Basnet et al., 2023). The
recent introduction of LLMs into pavement maintenance is groundbreaking. Oguntoye et al. (2025)
employed ChatGPT-4 to classify M&R records and improve prediction models, while Deng et al. (2024)
used an LLM agent with RAG to generate maintenance recommendations. These pioneering efforts
illustrate the feasibility of LLM-driven maintenance systems, though systematic frameworks that
integrate structured datasets like LTPP with RAG-enhanced LLM reasoning are still lacking.

The literature reveals a clear evolution in pavement management approaches, from deterministic
models to sophisticated Al systems. However, three critical gaps persist:(1) While LTPP-based models
provide predictive capabilities and CBR systems offer precedent-based reasoning, no existing
framework systematically integrates these complementary approaches with modern Al capabilities. (2)
Advanced machine learning models achieve high prediction accuracy but lack the transparency
required for professional engineering decision-making, particularly in maintenance strategy selection,
where justification is crucial. (3)Existing Al applications in pavement management generate ad-hoc
outputs that are difficult to integrate with established pavement management workflows and reporting
standards. This study addresses these gaps by developing an integrated LLM-RAG framework that
combines the predictive power of LTPP data with the interpretability of case-based reasoning and the
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reasoning capabilities of modern Al, generating standardized professional outputs suitable for practical
implementation.

3 Methodology

This study adopts a quantitative, data-driven research design to develop and validate a Retrieval-
Augmented Generation (RAG) enhanced Large Language Model (LLM) for pavement maintenance
strategy recommendation. Unlike traditional decision support systems, which rely on deterministic
deterioration models and rule-based decision trees, this framework leverages historical precedents and
Al reasoning to provide transparent, interpretable, and standardized recommendations. The
methodology consists of three stages: (i) data collection and preprocessing, (ii) development of the
RAG-enhanced LLM framework, and (iii) evaluation through training and validation experiments. Figure
1 provides an overview of the methodological framework, while the following subsections describe each
component in detail.

3.1 Data Collection and Process

The dataset used in this study is derived from the Long-Term Pavement Performance (LTPP) program, a
comprehensive pavement monitoring database covering road sections across North America. To
supportthe development of the proposed framework, five modules were selected from the LTPP dataset:
pavement basic information, climate, traffic, pavement performance, and maintenance records.

The variables were carefully chosen to represent the key factors influencing pavement condition and
maintenance decisions. Specifically, the basic information module provides state code, pavement type,
construction number, and structural layer material and thickness. The climate module includes
precipitation, freeze-thaw cycles, temperature indicators, wind speed, humidity, and solar radiation.
The traffic module covers annual average daily truck traffic (AADTT) and cumulative axle load measures
(KESAL). The performance module contains pavement roughness (MRI/IRI), rutting, and multiple
cracking indices for both flexible (AC) and rigid (PCC) pavements. Finally, the maintenance module
records maintenance type, thickness, material, and layer information. A detailed variable dictionary is
provided in Table 1 (Appendix).

To reduce data sparsity and improve robustness, the 23 original maintenance actions in the LTPP
dataset were consolidated into seven standardized categories: Crack Sealing, Patch Repair, Surface
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair. This
consolidation was based on technical characteristics and functional similarity, aligned with FDOT
practices and AASHTO guidelines, ensuring that the categories remain operationally meaningful while
minimizing noise from rarely applied treatments. A mapping of original actions to the seven categories
is shown in Table 2 (Appendix).

To reduce data sparsity and improve robustness, the 23 original maintenance actions in the LTPP
dataset were consolidated into seven standardized categories: Crack Sealing, Patch Repair, Surface
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair. This
consolidation was based on technical characteristics and functional similarity, aligned with FDOT
practices and AASHTO guidelines, ensuring that the categories remain operationally meaningful while
minimizing noise from rarely applied treatments. A mapping of original actions to the seven categories
is shown in Table 2 (Appendix).

Table 3 Pavement type distribution in training and validation sets

Pavement Type Historical Cases Validation Cases Total
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AC 95 27 122
PCC 15 3 18
Total 110 30 140

3.2 Development of RAG-enhanced Pavement Maintenance LLM

Intelligent pavement maintenance decision-making has become a critical requirement for ensuring
transportation infrastructure resilience under climate change and traffic loading. This research
proposes an LLM-based pavement maintenance framework built upon RAG. Figure 1 illustrates the
overall workflow of the proposed RAG-enhanced pavement maintenance framework. Historical
pavement records, including basic information, climate, traffic, performance, and maintenance
features, are embedded and stored in a vector database. When a new pavement case is queried, the
system performs a similarity search and metadata filtering to identify the most relevant historical cases.
These retrieved cases, along with the contextual features of the current pavement section, are then
passed into the LLM through a structured prompt. The LLM processes the input and generates a
standardized maintenance recommendation report that specifies the most suitable maintenance
category, confidence score, technical justification, and assumptions or limitations. This workflow
ensures that the framework leverages both quantitative data and historical precedents, producing
recommendations that are interpretable, transparent, and aligned with engineering practice. The
framework is composed of three modules: (i) Vector Database, (ii) Retrieval Component, and (iii)
Generation Component.

Vector Database
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Figure 1. Framework of the RAG-enhanced LLM for Pavement Maintenance Strategy Generation

3.2.1 Vector Database

The vector database, established from historical pavement sections and their maintenance records,
acts as an external knowledge base for the LLM. It facilitates the matching of historical cases with
current pavement conditions by embedding features from five modules: basic information, climate,
traffic, pavement performance, and maintenance records. Specifically, the database integrates
variables such as pavement type, age, base/subbase materials, precipitation, freeze-thaw cycles,
AADTT, rutting, and cracking indices, as summarized in Table 1 (Appendix).

To reduce sparsity and complexity, the original 23 maintenance actions in the LTPP dataset are
consolidated into seven standardized categories, including —Crack Sealing, Patch Repair, Surface
Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, and Rigid Pavement Repair, based on
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technical characteristics and functional similarity (Table 2 (Appendix)). This classification ensures
balanced data distribution, enhances prediction robustness, and aligns with practical maintenance
management practices.

3.2.2 Retrieval Component

The retrieval componentis responsible for similarity search. Each new pavement case is processed into
a compact document embedding that captures its essential features. Using cosine similarity as the
primary metric, the system retrieves the top-K most relevant historical cases (K=3 in this study). Both
the feature vectors and contextual metadata (e.g., pavement type, age, climate conditions) of the
retrieved cases are passed to the LLM as comparative benchmarks.

3.2.3 Generation Component

The generation component is developed to consist of a structured prompt template and the LLM. The
engineered prompt template guides the LLM by providing explicit instructions that shape both input
processing and output generation. These instructions ensure consistency, interpretability, and
technical alignment with pavement management practices.

Table 4 (Appendix) illustrates the designated prompt template for pavement maintenance
recommendations. The parameters contained in the braces {} are placeholders that dynamically change
according to the input data. Initially, the system captures and organizes the basic information of the
pavement section. This includes the section ID, year of record, pavement type, age, and structural
characteristics, as well as climate indicators (temperature, precipitation, freeze-thaw cycles), traffic
loadings (ESAL, AADTT), and current performance measures such as roughness, rutting, and cracking.
In addition to these direct indicators, the template incorporates relevant historical maintenance cases
retrieved from the knowledge base. This comparative approach enriches the context for the LLM,
enabling it to leverage both quantitative thresholds and past precedents to improve decision-making.
To ensure clarity and transparency, the LLM is instructed to generate its outputs in a structured JSON
format. The output dictionary contains several key elements:

(1) Primary Maintenance Category: One of the seven standardized actions.

(2) Confidence Score: A numerical measure of certainty in the prediction.

(8) Technical Justification: A concise explanation linking the recommendation to climate, traffic,
performance conditions, and historical references.

(4) Assumptions and Limitations: Explicit notes on data quality, missing variables, or the need for field
verification.

This framework ensures that the recommendations are not only data-driven but also professionally
interpretable, providing engineers with transparent and context-aware maintenance strategies that
align with best practices.

3.3 Evaluation

The framework was validated on 30 pavement sections using accuracy of predicted maintenance
categories as the primary metric. Results were compared with historical decisions, and incorrect
predictions were analyzed to identify common patterns. While the dataset size constrains statistical
generalization, the evaluation demonstrates the feasibility, interpretability, and practical alignment of
the proposed framework, laying the foundation for future large-scale testing.
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4 Results

The RAG+LLM framework was validated on 30 pavement sections and achieved an accuracy of 76.7%
(23/30 cases), comparable to baseline rule-based decision matrices. Reports were structured and
interpretable, including condition summaries, historical case references, technical justifications, and
explicit assumptions, ensuring transparency and practical usability.

Predicted categories showed a preference for structural and renewal measures: mill and overlay (15,
50%), surface treatment (9, 30%), patch repair (3, 10%), rigid repair (2, 6.7%), and thin overlay (1, 3.3%).
Crack sealing (0/2) and recycled treatment (0/1) were never predicted, and the thin overlay was also
misclassified (0/2 correct). These results highlight the framework’s strength in mainstream practices
but its limited ability to recommend preventive or innovative actions.

Error analysis showed that most of the 7 misclassifications occurred in underrepresented categories,
confirming the impact of dataset imbalance. Additionally, borderline performance thresholds (e.g.,
roughness and rutting) contributed to errors. Environmental and traffic variables influenced outcomes
logically: high rainfall, frequent freeze-thaw, and heavy traffic increased structural recommendations,
while low-traffic sections received more preventive or surface treatments. Performance thresholds also
acted as decisive cutoffs, with higher roughness/rutting leading to structural interventions. Each case
was processed in under 5 seconds, showing good computational efficiency.

5 Discussion

The framework aligns with established pavement management practices: overlays dominate mid-life
pavements, while patch and rigid repair address localized or structural needs. However, preventive
measures such as crack sealing and thin overlays were not predicted, and recycled treatments were
absent. This reflects both imbalanced LTPP data and the framework’s reliance on performance
thresholds, which bias results toward corrective actions once deterioration is evident.

This limitation is critical for practice, as agencies rely on preventive strategies to extend service life and
optimize budgets. Without such coverage, the framework risks favoring costlier interventions. Future
work should address this by balancing training data, refining retrieval weighting, and incorporating
lifecycle stage constraints to improve preventive treatment recognition.

Despite this gap, the framework showed strong interpretability and transparency, clearly explaining
recommendations and assumptions. Combined with its computational efficiency, this highlights
potential for integration into PMS workflows.

6 Conclusions

This study developed and validated an RAG-LLM framework for standardized pavement maintenance
strategy generation. Key findings are:

1. 76.7% prediction accuracy across 30 validation cases, comparable to traditional PMS.

2. Predictions dominated by mill and overlay (50%) and surface treatment (30%), consistent with
practice.

3. Decisions logically incorporated age, climate, traffic, and performance indicators.

4. Reports were structured, interpretable, and supported by historical case references.

Proceedings of Smart and Sustainable Built Environment Conference Series SASBE2025 443 | 447



Chenqin XIONG", Tarek Zayed ', Shihui MA', Rongsheng LIU '

Limitations include the absence of crack sealing (0/2), thin overlay (0/2), and recycled treatments (0/1),
simplified environmental and traffic inputs, and a small validation set. Future work should expand
preventive and innovative coverage, refine inputs, and scale validation.

Overall, the framework demonstrates strong potential for intelligent, interpretable, and standardized
pavement maintenance planning, with both academic and practical value.
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7 Appendix

Table1Variable dictionary

Type

Name of Input Variable

Variable Source

Basic Information

Climate Information

Traffic Information

State Code
Pavement Age
Pavement Type
Material of Base

Material of Subbase

Thickness of
Base/Subbase

Precipitation

Freeze-Thaw Cycles

Thermal Indicators

Wind

Humidity

Radiation

AADTT (Annual Average

Daily Truck Traffic)

KESAL (Cumulative
Equivalent Single Axle
Loads)

Roughness (IRI/MRI)

STATE_CODE

Calculation based on CONSTRUCTION_NO
AC / PCC/ Combination

MATL_CODE_EXP

MATL_CODE_EXP

REPR_THICKNESS

PRECIPITATION
FREEZE_THAW

TEMP_AVG, TEMP_MEAN_AVG, DAYS_ABOVE_32_C, DAYS_BELOW_0_C,
FREEZE_INDEX

WIND_VELOCITY_AVG, WIND_VELOCITY_MAX

HUM_AVG_AVG, HUM_AVG_MAX, HUM_AVG_MIN

SHORTWAVE_SURFACE_AVG, EMISSIVITY_AVG

AADTT_ALL_TRUCKS_TREND

ANNUAL_ESAL_TREND, ANNUAL_GESAL_TREND

MRI
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Pavement
Performance

Maintenance
Information

Rutting

Cracking - Flexible (AC)

Cracking - Rigid (JPCC)

Maintenance Type
Maintenance Thickness
Maintenance Material

Maintenance Layer

MAX_MEAN_DEPTH_1_8

HPMS16_CRACKING_PERCENT_AC, MEPDG_CRACKING_PERCENT_AC,
MEPDG_TRANS_CRACK_LENGTH_AC, MEPDG_LONG_CRACK_LENGTH_AC,
ME_PERCENT_WHEEL_PATH_CRACK

HPMS16_CRACKING_PERCENT_JPCC, MEPDG_CRACKING_PERCENT_JPCC,
ME_PERCENT_CRACKED_SLABS

Maintenance Category
IMP_THICKNESS
MATL_CODE_EXP
LAYER_NO

Table2 simplified maintenance classification.

Maintenance Measure

Specific Measure

Crack Sealing

Surface Treatment

Thin Overlay

Recycled Treatment

Mill and Overlay

Rigid Pavement Repair

Transverse Joint Sealing

Lane-Shoulder Longitudinal Joint Sealing

Crack Sealing

Manual Premix Spot Patch

Patch Potholes (Hand Spread, Compacted with Truck)

Full Depth Patch of AC Pavement

Partial Depth Patching of PCC Pavement Other Than at Joint
Full Depth Patching of PCC Pavement Other Than at Joint
Aggregate Seal Coat

Slurry Seal Coat

Surface Treatment — Single Layer

Surface Treatment - Double Layer

Asphalt Concrete Overlay

Thin Hot-Mix Overlay

Hot-Mix Recycled Asphalt Concrete Overlay

Warm-Mix Recycled Asphalt Concrete Overlay

Cold In-Place Recycling

Mill Off AC and Overlay

Mill Existing Pavement and Overlay with Hot-Mix Recycled AC
Mill Existing Pavement and Overlay with Warm-Mix Recycled AC
PCC Slab Replacement

Full Depth Transverse Joint Repair Patch

Grinding Surface

Table 4 The prompt for pavement maintenance recommendations

Prompt
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{
"Section ID": "{SHRP_ID} _{ID} {Year}",
"Year": "{Year}",
"Report Date":"{current date}",
"Condition Summary": {
"Climate Traffic": "Comprehensive 2-3 sentence analysis of climate conditions (temperature, precipitation, freeze-thaw) and traffic
loading (ESAL, AADTT) impacts on pavement deterioration.”,
"Roughness Deterioration": "Detailed assessment of current performance status including MRI, rutting depth, and cracking
patterns with performance thresholds evaluation.’,
"Pavement Context": "Summary of pavement type, age, structural characteristics, and maintenance history context affecting
treatment selection."
b
"Historical Reference": {
"Relevant cases ID": ["List of 3 most relevant historical case IDs"],
"Relevant Records Summary": "Summary of historical cases with similar pavement type, age, climate, and traffic conditions,
focusing on applied treatments and effectiveness.’,
"Relevance Reason": "Technical explanation of why selected cases are applicable, including quantitative similarity in key
parameters (age +5 years, similar climate zone, comparable traffic loading)."
b
"Recommended Maintenance Plan": {
"Maintenance": [
"SELECT EXACTLY ONE FROM: Crack Sealing, Surface Treatment, Thin Overlay, Recycled Treatment, Mill and Overlay, Patch
Repair, Rigid Pavement Repair™],
"Justification": "Technical justification linking current conditions to recommended treatment, referencing performance thresholds,
historical case outcomes, and engineering best practices. Include quantitative analysis where possible.",
"Age_Appropriateness": "Specific analysis of why the recommended treatment is suitable for the pavement's current age,
considering remaining service life and cost-effectiveness."
b
"Assumptions Limitations": "Clear statement of analysis assumptions, data limitations, and recommendations for field verification
or additional testing."

}
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