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Active back-support exoskeletons have shown promise in reducing back-related 
musculoskeletal disorders in labor-intensive occupations. Yet, adoption in construction 
remains constrained by fragmented evidence on their biomechanical benefits, human 
factors risks, and practical usability. This study presents the development of a domain-
adapted large language model fine-tuned with the Retrieval-Augmented Fine-Tuning 
framework to systematically synthesize and communicate evidence relevant to active back-
support exoskeleton use in construction. The training dataset was developed from a review 
of twenty peer-reviewed studies spanning nine construction tasks and seven active back-
support exoskeleton models, covering outcomes related to muscle activity, range of motion, 
perceived discomfort, exertion, usability, cognitive load, fall risk, and sociotechnical 
adoption factors. These studies identified both facilitators (e.g., productivity gains, posture 
correction, and device durability) and barriers (e.g., restricted mobility, thermal discomfort, 
and task–device incompatibility) shaping adoption in construction workflows. A total of 3,650 
question–answer pairs were generated with distractors and Chain-of-Thought reasoning and 
used in a teacher–student distillation process with GPT-4o and GPT-4o-mini. The fine-tuned 
model achieved a validation accuracy of 88% and demonstrated stable generalization 
without overfitting, supported by low validation loss. In head-to-head evaluation against the 
baseline, the fine-tuned model achieved reliable scores in coherence, relevance, and 
harmlessness, a 10% improvement in response completeness (96% vs. 86%), and a 2% 
increase in factual accuracy (82% vs. 80%). The results demonstrate the feasibility of 
deploying fine-tuned large language models as interactive decision-support tools for 
exoskeleton adoption in construction, advancing the intersection of artificial intelligence, 
biomechanics, and occupational safety.  
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 Highlights  
• Active back-support exoskeletons show both biomechanical benefits and adoption 

barriers. 
• RAFT fine-tuned model improved accuracy, completeness, and safe decision support.  
• Adoption requires balancing safety, usability, productivity, and long-term cost.  
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1 Introduction  
Active back-support exoskeletons are increasingly recognized as promising interventions for reducing 
back-related musculoskeletal disorders in the construction industry. Compared with passive devices, 
active back-support exoskeletons offer more mechanical assistance (Reimeir, Calisti, Mittermeier, 
Ralfs, & Weidner, 2023), making them suitable for the physically demanding and high-risk tasks that 
contribute to elevated rates of musculoskeletal injuries in construction (Akinwale Okunola, Akanmu, & 
Yusuf, 2023). Despite this potential, most commercially available active back-support exoskeletons are 
designed for general industrial settings, particularly manual material handling, and often misalign with 
the dynamic and irregular demands of construction work. 

Empirical evaluations of active back-support exoskeletons in construction tasks report mixed findings. 
Documented benefits include reduced muscle activity (Ojha, Guo, Jebelli, Martin, & Akanmu, 2024), 
improved range of motion (Schwartz, Desbrosses, Theurel, & Mornieux, 2023), and decreased 
discomfort (Akinwale Okunola, Akanmu, & Yusuf, 2023). However, unintended consequences such as 
restricted mobility (A. Okunola, Afolabi, Akanmu, Jebelli, & Simikins, 2024), localized pressure points 
(Ojha et al., 2024), uneven load distribution (Ali, Fontanari, Schmoelz, & Agrawal, 2021), increased fall 
risk (Akinwale Okunola, Akanmu, & Jebelli, 2024), and elevated cognitive load (Akanmu, Okunola, 
Jebelli, Ammar, & Afolabi, 2024) have also been observed. In parallel, studies examining adoption 
factors reveal divergent stakeholder priorities. While managers and corporate leaders emphasize 
productivity and cost-effectiveness, frontline workers and safety officers prioritize usability, comfort, 
and risk reduction (Crea et al., 2021). This diversity of perspectives complicates exoskeleton selection 
and hampers effective integration into construction workflows. 

Although active back-support exoskeletons are intended to reduce musculoskeletal risks and improve 
productivity, inappropriate device selection may negate these benefits and amplify risks. For instance, 
Akanmu et al. (2024) reported increased cognitive load from bulky devices during carpentry tasks 
requiring frequent posture adjustments. Similarly, Zhu, Weston, Mehta, and Marras (2021) found that 
cognitive demands can undermine biomechanical gains and accelerate user fatigue. High procurement 
and maintenance costs further exacerbate the risks of poor device fit, creating financial barriers to 
adoption. These challenges highlight the need for decision-support models that can integrate 
biomechanical evidence with stakeholder priorities to generate actionable guidance for exoskeleton 
deployment. 

Large language models (LLMs) such as GPT, BERT, and LLaMA are pretrained to generate human-like text 
across diverse domains (Hadi et al., 2023). When fine-tuned with domain-specific corpora, these 
models often outperform their general-purpose counterparts by contextualizing technical evidence for 
specialized applications (Susnjak et al., 2025). Recent advances in construction demonstrate this 
potential: Pu, Yang, Li, and Guo (2024) fine-tuned GPT-4o-mini for inspection reporting, while Koppel, 
Tšernikova, and Kalvet (2024) adapted GPT-4 as a virtual ergonomic risk assessment assistant. 
Traditional approaches such as supervised fine-tuning and retrieval-augmented generation each carry 
limitations—overfitting and hallucinations in supervised fine-tuning, and irrelevant retrievals in 
retrieval-augmented generation (Chung, Vo, Kizilkale, & Reite, 2024). The Retrieval-Augmented Fine-
Tuning (RAFT) framework integrates both methods, reducing hallucinations and improving contextual 
grounding (Chung et al., 2024; Zhang et al., 2024). Despite the progress in artificial intelligence for 
construction safety, scarce studies have applied fine-tuned LLMs to the domain of exoskeleton 
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adoption, where biomechanics, human factors, and stakeholder dynamics intersect. 

This study develops and evaluates a domain-specific LLM fine-tuned with the RAFT framework to 
support active back-support exoskeleton adoption in construction. The model synthesizes 
biomechanical and human factors evidence while incorporating stakeholder perspectives, offering 
contextually relevant recommendations for device-specific deployment. The contribution lies in 
bridging artificial intelligence capabilities with construction ergonomics, advancing decision-support 
infrastructure that can inform safer and more effective exoskeleton integration in industry practice. 

2 Background 
This section reviews the current state of knowledge on back-support exoskeletons in construction, 
emphasizing human factors evidence, stakeholder perspectives, and the potential for artificial 
intelligence-driven decision support. It also identifies research gaps that motivate the development of 
a domain-specific large language model.  

2.1 Human Factors Evidence on Benefits and Risks of Exoskeletons in 
Construction  

Human factors risk assessments of active back-support exoskeleton across various construction tasks 
have demonstrated both biomechanical benefits (Lei et al., 2024; Akinwale Okunola, Akanmu, Jebelli, 
& Afolabi, 2025; Sposito, Fanti, Poliero, Caldwell, & Di Natali, 2024) and potential risks (Akanmu et al., 
2024; Akinwale Okunola et al., 2024; Sposito et al., 2024). For instance, Akinwale Okunola, Akanmu, 
Jebelli, et al. (2025) evaluated an active back-support exoskeleton during framing tasks and reported 
reductions in muscle activity, range of motion, physical exertion, and discomfort. Similarly, Sposito et 
al. (2024)  found that active back-support exoskeleton use during railway construction reduced 
perceived fatigue, while Lei et al. (2025) observed decreased muscle activity and workload during 
bending and lifting tasks. However, risks have also been identified. Sposito et al. (2024) reported user 
discomfort in the thighs and thermal discomfort during railway construction tasks. Akanmu et al. (2024) 
found increased cognitive load associated with active back-support exoskeleton use during carpentry 
framing, and Akinwale Okunola et al. (2024) highlighted elevated fall risk during framing tasks. These 
findings highlight the complex trade-offs between benefits and risks, emphasizing the need for nuanced 
understanding in the selection and adoption of active back-support exoskeleton among construction 
stakeholders. 

2.2 Stakeholder Perspectives, Adoption Barriers, and the Potential of Artificial 
Intelligence for Decision Support  

In addition to the task-specific risks and benefits of active back-support exoskeleton, construction 
stakeholders hold varying priorities regarding the facilitators and barriers to adoption, which influence 
appropriate exoskeleton selection. A. Okunola et al. (2024) examined these factors from the 
stakeholders’ perspective, identifying facilitators such as productivity gains, cost-effectiveness, injury 
reduction, durability, low cognitive load, posture correction, and ease of maintenance. Reported 
barriers included incompatibility with tasks, poor performance on uneven surfaces, excessive weight, 
perceived fall risk, restricted mobility, thermal discomfort, and snagging hazards. Similarly, Gutierrez et 
al. (2024) identified facilitators, including reduced fatigue, improved task performance, increased 
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productivity, standardization of expectations, workforce retention, and positive social perception. 
Barriers noted were concerns about hygiene and reuse, heat discomfort, cost sensitivity, fall risk, 
mobility limitations, poor fit for female workers, pressure points, durability issues, and bulkiness 
(Dunson-Todd, Nik-Bakht, & Hammad, 2025). 

While understanding the human factors risks and benefits of active back-support exoskeleton is 
important, stakeholder perceptions of adoption facilitators and barriers also play a critical role (Crea et 
al., 2021). The ability to synthesize these factors is essential for guiding effective active back-support 
exoskeleton selection and supporting broader adoption in the construction industry. LLMs, which are 
advanced artificial intelligence pre-trained on an extensive amount of data to synthesize and generate 
human-like language (Hadi et al., 2023), presents an opportunity to bridge this synthesis gap. By 
translating complex, multi-faceted scientific insights into accessible, actionable narratives, LLMs can 
help stakeholders better understand the nuanced trade-offs involved in active back-support 
exoskeleton adoption. Beyond general application, these models are known for their ability to be fine-
tuned for a specific domain purpose, providing in-depth knowledge in a particular area, which often 
outperforms their general-purpose counterparts (Hadi et al., 2023). For example, Pu et al. (2024) fine-
tuned a pretrained GPT-4o-mini for driving AutoRepo, a system that uses construction information to 
generate periodic inspection reports, which could help stakeholders in understanding the status of 
construction activity on site. Koppel et al. (2024) fine-tuned GPT-4 to function as a virtual risk analysis 
assistant, specifically designed to support ergonomic risk assessments within the construction 
industry. These examples demonstrate the feasibility of domain-specific fine-tuning for construction 
safety applications. However, unlike prior efforts focused on general safety reporting or risk 
assessment, the domain of exoskeleton adoption presents a unique challenge that spans 
biomechanics, cognitive ergonomics, sociotechnical dynamics, and economic considerations. A 
domain-specific model for active back-support exoskeleton adoption must therefore be trained on 
datasets that capture not only scientific literature but also stakeholder perceptions and task-specific 
constraints.  

2.3 Research Gap 

Although these studies highlight the feasibility of adapting LLMs for targeted applications, the 
effectiveness of such models is largely determined by the relevance of the selected datasets. Unlike 
other subsets of artificial intelligence, such as machine learning, LLMs require datasets primarily in text 
form rather than continuous sensor data. Synthesizing peer-reviewed documents in a domain area has 
been used for fine-tuning LLMs to become experts in that domain (Susnjak et al., 2025). For example, 
Susnjak et al. (2025) fine-tuned GPT-3.5 using a curated dataset derived from seventeen peer-reviewed 
biomedical studies, enabling the model to more effectively synthesize and interpret medical literature. 
Given that LLMs can be adapted for specific domains, approaches such as Supervised Fine-Tuning, 
which involves training on labelled data, and RAG, which enables inference from external documents, 
each have limitations (Chung et al., 2024; Zhang et al., 2024). Supervised Fine-Tuning may lead to 
hallucinations due to overfitting, while Retrieval-Augmented Generation can introduce inaccuracies 
through the retrieval of irrelevant or misleading documents. To address these issues, Zhang et al. (2024) 
proposed RAFT, which combines the strengths of both methods. RAFT improves accuracy and reduces 
hallucinations by training the model to selectively use relevant retrieved content. The authors describe 
Supervised Fine-Tuning as similar to preparing for a closed-book exam, Retrieval-Augmented 
Generation as an open-book exam without preparation, and RAFT as a combination of both—studying 
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for the exam while also having access to the book, ensuring more reliable and contextually grounded 
outputs. This study builds on these advancements by employing the RAFT methodology to curate, 
synthesize, and fine-tune a domain-specific LLM that captures the breadth of biomechanical, cognitive, 
and stakeholder factors influencing active back-support exoskeleton adoption in construction. This 
approach aims to provide stakeholders with an Artificial Intelligence-driven tool capable of generating 
contextually relevant, evidence-based recommendations adapted to the multifaceted realities of 
construction environments. 

3 Methodology  
Figure 1 presents the overall workflow, which is structured into four sequential stages: (1) literature 

review, (2) data preparation and pre-processing, (3) fine-tuning of a domain-specific large language 
model, and (4) model performance evaluation. 

Figure 1. Overview of methodology. 

3.1 Literature Review 

The first stage consisted of a review of peer-reviewed studies to compile a dataset on the biomechanical 
benefits, human factors risks, and adoption considerations of active back-support exoskeletons in 
construction. Searches were performed across Google Scholar, ScienceDirect, IEEE Xplore, and the 
American Society of Civil Engineers Library using combinations of keywords including “active 
exoskeletons AND construction”, “powered exoskeletons AND construction”, and “wearable robotic 
devices AND construction”. A total of 20 studies, published between 2022 and 2025, were selected 
according to inclusion criteria that emphasized evaluations of active back-support exoskeletons across 
diverse construction tasks. Selection prioritized articles reporting both objective biomechanical 
metrics (e.g., electromyographic activity and kinematic range of motion) and subjective measures (e.g., 
perceived discomfort and cognitive load), in line with best practices in applied human factors research. 
The reviewed tasks included manual material handling, carpentry, railway maintenance, masonry, 
flooring, rebar tying, overhead drilling, dynamic lifting, and load carrying. Exoskeletons covered 
spanned commercially available systems (e.g., Cray X, Iron Hand, Apogee, StreamEXO, and soft robotic 
suits) as well as laboratory-developed prototypes. 

3.2 Data Preparation and Preprocessing 

The second stage involved transforming insights from the reviewed studies into a dataset suitable for 
RAFT. Each paper was manually reviewed to ensure core findings related to the biomechanical, 
psychological, and physiological implications of exoskeleton use are represented in the studies. For 
example, findings such as “active back-support exoskeletons reduce lumbar strain but increase 
shoulder discomfort during prolonged tasks” were reviewed. From each of the identified studies, 
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practitioner-oriented Q&A pairs were generated (e.g., “What is the reduction in lumbar range of motion 
when using a back-support exoskeleton?”), with answers synthesizing empirical evidence, references, 
and Chain-of-Thought reasoning to approximate expert logic. A total of 3,650 Q&A pairs were produced 
using the RAFTDataGen algorithm, powered by the GPT-4o model on Microsoft Azure’s AI cloud 
infrastructure. This algorithm supports the incorporation of distractors and explicit reasoning chains, 
ensuring dataset richness and reducing overfitting (Wu, Ding, Shen, & Tao, 2025). The resulting dataset 
size substantially exceeded comparable RAFT-based fine-tuning studies in adjacent domains (Sager, 
Cabaza, Cusack, Bass, & Dominguez, 2024; Shi, Kazda, Schmitter, & Gupta, 2025), strengthening model 
generalizability. 

3.3 Model Fine-Tuning 

The curated dataset was used to fine-tune GPT-4o-mini, a lightweight variant of GPT-4o optimized for 
speed and reasoning depth in applied decision-support contexts. The dataset was split into 70% training 
(8,030,685 tokens), 15% validation, and 15% testing subsets. Training followed OpenAI’s recommended 
fine-tuning procedures, with a batch size of 32, a learning rate of 5 × 10⁻⁵, and three epochs to balance 
convergence and generalization. RAFT fine-tuning enabled the model to internalize domain-specific 
reasoning patterns, such as linking electromyographic evidence of muscle fatigue with subjective 
reports of discomfort. This capacity is particularly critical for construction safety decision-making, 
where real-time sensor data are limited and perceptual insights must be inferred. 

3.4 Model Evaluation 

The performance of the fine-tuned model was first assessed using automated metrics, including 
validation accuracy and loss curves. In addition, the LLM-as-a-Judge framework was employed, which 
involves using independent LLMs to evaluate the outputs of the fine-tuned model (Zheng et al., 2023). 
This method has been shown to achieve up to 80% agreement with human raters and is valued for its 
scalability, consistency, and cost-effectiveness in evaluating LLM outputs (Zheng et al., 2023). Although 
human judgment remains the gold standard due to its nuanced contextual understanding, LLM-as-a-
Judge provides an efficient alternative for large-scale evaluation. A single-answer grading protocol, as 
proposed by Zheng et al. (2023), was adopted, in which model responses were scored against 
predefined criteria. The evaluation dimensions included coherence (clarity and structure of the 
response), relevance (alignment with the prompt), completeness (coverage of essential points), factual 
accuracy (truthfulness of content), and harmlessness (absence of harmful or biased information). This 
framework has been widely adopted in recent fine-tuning studies (Saroufim et al., 2025). For the 
evaluation, 20 Q&A pairs were randomly sampled from the reserved 15% test set. These queries were 
presented to both the fine-tuned model and the baseline GPT-4o-mini via the Microsoft Azure 
Playground. Outputs from each model were then independently scored by LLaMA 4, which served as 
the evaluation agent. Scores across criteria were aggregated, and results were compared to determine 
the performance gains of the fine-tuned model relative to the baseline. 

4 Results 
This section presents the results of the study, encompassing both the findings from the literature review 
and the performance evaluation of the fine-tuned model. 

4.1 Literature Review 
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The literature review process identified twenty peer-reviewed studies, which collectively advanced 
understanding of the biomechanical effects of active back-support exoskeletons in construction and 
the sociotechnical factors shaping their adoption. Across these studies, common biomechanical 
metrics included reductions in muscle activity (via electromyography), improvements in range of 
motion, and decreases in perceived discomfort and exertion. For example, Akinwale Okunola, Akanmu, 
Jebelli, et al. (2025) demonstrated significant reductions in lumbar muscle activation during framing 
tasks, while (Sposito et al., 2024) reported decreased fatigue in railway construction when using active 
back-support exoskeletons. At the same time, challenges such as increased cognitive workload, 
thermal discomfort, and restricted mobility. Factors that may increase fall risks were also documented 
(Akinwale Okunola et al., 2024; Sposito et al., 2024). In addition to physiological and ergonomic 
evaluations, the studies highlighted adoption facilitators and barriers from multiple stakeholder 
perspectives. Facilitators included productivity gains, reductions in worker compensation claims, 
posture correction, device durability, and ease of maintenance. Barriers included task–device 
incompatibility, restricted mobility, excessive device weight, thermal discomfort, and hygiene concerns 
associated with shared use. These findings underscore the multifaceted nature of integrating active 
back-support exoskeletons into construction workflows and the need for decision-support tools that 
synthesize both quantitative biomechanical data and qualitative stakeholder insights. 

4.2 Model Fine-Tuning Performance 

Following dataset preparation, the RAFT-based fine-tuning of GPT-4o-mini was successfully completed 
on the curated dataset of 3,650 Q&A pairs. The model achieved validation accuracy of 88% by the third 
epoch, indicating stable learning and effective generalization without notable overfitting, as shown by 
the low validation loss. The RAFT framework’s integration of distractor documents and Chain-of-Thought 
reasoning enhanced contextual discernment, enabling the model to separate relevant biomechanical 
insights from unrelated content. This improvement translated into more nuanced, task-specific 
recommendations for active back-support exoskeleton deployment in construction scenarios. 

4.3 LLM-as-a-Judge Evaluation 

The LLM-as-a-Judge evaluation offered a detailed comparison of the fine-tuned GPT-4o-mini and the 
base model across 20 randomly selected Q&A pairs. As shown in Figure 2, the fine-tuned model 
outperformed the base model across all metrics. Specifically, it achieved perfect scores of 5 out of 5 on 
coherence, relevance, and harmlessness. This indicates consistently clear, contextually appropriate, 
and safe outputs. On completeness, the fine-tuned model scored 4.8 (96%) compared to 4.3 (86%) for 
the base model, demonstrating its ability to deliver more comprehensive answers that connected 
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biomechanical outcomes with adoption concerns. For factual accuracy, the fine-tuned model achieved 
4.1 (82%), slightly higher than the base model’s 4.0 (80%). These results confirm the RAFT framework’s 
effectiveness in embedding domain-specific expertise into a compact, deployable model. 

Figure 2. Performance evaluation.  

5 Discussion  
The development and evaluation of the fine-tuned LLM in this study introduce an AI-driven approach to 
supporting the selection and adoption of active back-support exoskeletons in construction. The 
model’s ability to synthesize biomechanical insights alongside stakeholder priorities addresses a 
critical gap in current exoskeleton evaluation frameworks, which often emphasize either physiological 
metrics or qualitative perceptions in isolation (De Looze, Bosch, Krause, Stadler, & O’Sullivan, 2016). By 
integrating these dimensions, the fine-tuned model provides a holistic lens through which professionals 
can evaluate trade-offs in active back-support exoskeleton deployment. 

The literature review formed a critical empirical foundation, ensuring that the training data reflected the 
multifaceted impacts of active back-support exoskeletons—from muscle activity and range of motion 
to cognitive workload and fall risk. For example, reductions in muscle activation ranging from 12–22% 
during manual material handling tasks have been documented (Lazzaroni et al., 2020), while decreases 
in range of motion are also evident in carpentry (Akinwale Okunola, Akanmu, Jebelli, et al., 2025) and 
flooring tasks (Akinwale Okunola, Akanmu, & Yusuf, 2023). Equally important, the synthesis of 
facilitators and barriers from diverse stakeholders added a practical layer that is often 
underrepresented in biomechanical research. This dual perspective enabled the model to produce 
recommendations that are both scientifically grounded and operationally relevant. The RAFT-based 
fine-tuning demonstrated the value of combining teacher-student distillation with domain-specific 
datasets. The resulting validation accuracy of 88%, along with qualitative improvements in 
completeness and factual accuracy, indicates meaningful gains over general-purpose LLMs. Such 
enhancements are vital for decision-support applications, where comprehensiveness and factual 
precision underpin trust and compliance (Bommasani, 2021). The LLM-as-a-Judge evaluation further 
reinforced these strengths, particularly in generating coherent, relevant, and safe outputs. Research 
has shown that powerful LLMs like GPT-4 can align with human preferences over 80% of the time in 
evaluations (Zheng et al., 2023). Nonetheless, LLM-based evaluators remain prone to biases (e.g., 
position bias, verbosity bias, and self-enhancement bias) as well as limited reasoning consistency 
(Zheng et al., 2023). These findings suggest that while LLM-as-a-Judge offers a cost-effective alternative 
to human evaluation, careful prompt engineering and bias mitigation are essential. 

From a practical standpoint, the fine-tuned model represents a pathway toward integrating artificial 
intelligence into construction safety and ergonomics planning. By enabling stakeholders to query the 
model on task-specific active back-support exoskeleton recommendations, cognitive risks, and 
adoption barriers, organizations can make data-driven decisions that balance productivity with worker 
well-being. The lightweight architecture of GPT-4o-mini further supports deployment in resource-
constrained environments such as mobile or on-site decision aids. Nonetheless, limitations remain. 
The model’s knowledge is bounded by the breadth of available literature, which, though comprehensive, 
may not fully capture emerging device technologies or contextual nuances such as environmental 
hazards and workforce diversity (e.g., gender-specific ergonomic responses). Additionally, while the 
RAFT framework reduced hallucinations, residual inaccuracies persist, as reflected in factual accuracy 
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scores. These challenges point to the need for ongoing dataset expansion, iterative retraining, and user-
in-the-loop mechanisms to refine reliability over time. Furthermore, given the documented biases in 
LLM-as-a-Judge evaluations (Zheng et al., 2023), future work should incorporate human expert 
validation or ensemble judging strategies to bolster evaluation robustness.  

6 Conclusions  
This study introduced a domain-specific LLM fine-tuned with the RAFT framework to synthesize 
biomechanical insights and sociotechnical factors influencing active back-support exoskeleton 
adoption in construction. By curating a dataset of 3,650 Chain-of-Thought Q&A pairs derived from 
twenty peer-reviewed studies, the model embedded empirical evidence and stakeholder perspectives. 
The fine-tuned GPT-4o-mini achieved 88% validation accuracy and outperformed the base model on 
completeness and factual accuracy, as validated through LLM-as-a-Judge evaluation. The model 
provides a scalable decision-support tool that assists construction professionals, ergonomists, and 
safety officers in evaluating task-specific suitability of active back-support exoskeletons. However, the 
model’s insights remain constrained by the scope of available literature and may not reflect rapidly 
evolving technologies or diverse construction contexts. While RAFT minimized hallucinations, 
consistently high factual accuracy remains a challenge in domains requiring interdisciplinary 
reasoning. 

Future research should expand the dataset to cover additional exoskeleton types (e.g., upper-limb 
supports and multi-joint exosuits), integrate multimodal data (e.g., sensor streams, real-time usage 
analytics, and environmental factors), and develop human-in-the-loop systems to combine AI 
recommendations with expert oversight. These steps would improve precision, adaptability, and 
trustworthiness. This study establishes a foundation for the intelligent integration of AI and 
biomechanics in construction, advancing safer, more ergonomic work environments through 
technology-informed decisions. Continued progress in this direction may accelerate the responsible 
adoption of wearable robotics across physically demanding industries, contributing to long-term 
occupational health and productivity gains. 
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