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Abstract

Active back-support exoskeletons have shown promise in reducing back-related
musculoskeletal disorders in labor-intensive occupations. Yet, adoption in construction
remains constrained by fragmented evidence on their biomechanical benefits, human
factors risks, and practical usability. This study presents the development of a domain-
adapted large language model fine-tuned with the Retrieval-Augmented Fine-Tuning
framework to systematically synthesize and communicate evidence relevant to active back-
support exoskeleton use in construction. The training dataset was developed from a review
of twenty peer-reviewed studies spanning nine construction tasks and seven active back-
support exoskeleton models, covering outcomes related to muscle activity, range of motion,
perceived discomfort, exertion, usability, cognitive load, fall risk, and sociotechnical
adoption factors. These studies identified both facilitators (e.g., productivity gains, posture
correction, and device durability) and barriers (e.g., restricted mobility, thermal discomfort,
and task—device incompatibility) shaping adoption in construction workflows. A total of 3,650
question-answer pairs were generated with distractors and Chain-of-Thought reasoning and
used in a teacher-student distillation process with GPT-40 and GPT-40-mini. The fine-tuned
model achieved a validation accuracy of 88% and demonstrated stable generalization
without overfitting, supported by low validation loss. In head-to-head evaluation against the
baseline, the fine-tuned model achieved reliable scores in coherence, relevance, and
harmlessness, a 10% improvement in response completeness (96% vs. 86%), and a 2%
increase in factual accuracy (82% vs. 80%). The results demonstrate the feasibility of
deploying fine-tuned large language models as interactive decision-support tools for
exoskeleton adoption in construction, advancing the intersection of artificial intelligence,
biomechanics, and occupational safety.

Keywords: Language Models; Construction Safety; Exoskeleton Adoption; Retrieval-
Augmented Fine-Tuning; Human Factors.

Highlights

e Active back-support exoskeletons show both biomechanical benefits and adoption
barriers.

e RAFT fine-tuned model improved accuracy, completeness, and safe decision support.

e Adoption requires balancing safety, usability, productivity, and long-term cost.
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1 Introduction

Active back-support exoskeletons are increasingly recognized as promising interventions for reducing
back-related musculoskeletal disorders in the construction industry. Compared with passive devices,
active back-support exoskeletons offer more mechanical assistance (Reimeir, Calisti, Mittermeier,
Ralfs, & Weidner, 2023), making them suitable for the physically demanding and high-risk tasks that
contribute to elevated rates of musculoskeletal injuries in construction (Akinwale Okunola, Akanmu, &
Yusuf, 2023). Despite this potential, most commercially available active back-support exoskeletons are
designed for general industrial settings, particularly manual material handling, and often misalign with
the dynamic and irregular demands of construction work.

Empirical evaluations of active back-support exoskeletons in construction tasks report mixed findings.
Documented benefits include reduced muscle activity (Ojha, Guo, Jebelli, Martin, & Akanmu, 2024),
improved range of motion (Schwartz, Desbrosses, Theurel, & Mornieux, 2023), and decreased
discomfort (Akinwale Okunola, Akanmu, & Yusuf, 2023). However, unintended consequences such as
restricted mobility (A. Okunola, Afolabi, Akanmu, Jebelli, & Simikins, 2024), localized pressure points
(Ojha et al., 2024), uneven load distribution (Ali, Fontanari, Schmoelz, & Agrawal, 2021), increased fall
risk (Akinwale Okunola, Akanmu, & Jebelli, 2024), and elevated cognitive load (Akanmu, Okunola,
Jebelli, Ammar, & Afolabi, 2024) have also been observed. In parallel, studies examining adoption
factors reveal divergent stakeholder priorities. While managers and corporate leaders emphasize
productivity and cost-effectiveness, frontline workers and safety officers prioritize usability, comfort,
and risk reduction (Crea et al., 2021). This diversity of perspectives complicates exoskeleton selection
and hampers effective integration into construction workflows.

Although active back-support exoskeletons are intended to reduce musculoskeletal risks and improve
productivity, inappropriate device selection may negate these benefits and amplify risks. For instance,
Akanmu et al. (2024) reported increased cognitive load from bulky devices during carpentry tasks
requiring frequent posture adjustments. Similarly, Zhu, Weston, Mehta, and Marras (2021) found that
cognitive demands can undermine biomechanical gains and accelerate user fatigue. High procurement
and maintenance costs further exacerbate the risks of poor device fit, creating financial barriers to
adoption. These challenges highlight the need for decision-support models that can integrate
biomechanical evidence with stakeholder priorities to generate actionable guidance for exoskeleton
deployment.

Large language models (LLMs) such as GPT, BERT, and LLaMA are pretrained to generate human-like text
across diverse domains (Hadi et al., 2023). When fine-tuned with domain-specific corpora, these
models often outperform their general-purpose counterparts by contextualizing technical evidence for
specialized applications (Susnjak et al., 2025). Recent advances in construction demonstrate this
potential: Pu, Yang, Li, and Guo (2024) fine-tuned GPT-40-mini for inspection reporting, while Koppel,
TSernikova, and Kalvet (2024) adapted GPT-4 as a virtual ergonomic risk assessment assistant.
Traditional approaches such as supervised fine-tuning and retrieval-augmented generation each carry
limitations—overfitting and hallucinations in supervised fine-tuning, and irrelevant retrievals in
retrieval-augmented generation (Chung, Vo, Kizilkale, & Reite, 2024). The Retrieval-Augmented Fine-
Tuning (RAFT) framework integrates both methods, reducing hallucinations and improving contextual
grounding (Chung et al., 2024; Zhang et al., 2024). Despite the progress in artificial intelligence for
construction safety, scarce studies have applied fine-tuned LLMs to the domain of exoskeleton
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adoption, where biomechanics, human factors, and stakeholder dynamics intersect.

This study develops and evaluates a domain-specific LLM fine-tuned with the RAFT framework to
support active back-support exoskeleton adoption in construction. The model synthesizes
biomechanical and human factors evidence while incorporating stakeholder perspectives, offering
contextually relevant recommendations for device-specific deployment. The contribution lies in
bridging artificial intelligence capabilities with construction ergonomics, advancing decision-support
infrastructure that can inform safer and more effective exoskeleton integration in industry practice.

2 Background

This section reviews the current state of knowledge on back-support exoskeletons in construction,
emphasizing human factors evidence, stakeholder perspectives, and the potential for artificial
intelligence-driven decision support. It also identifies research gaps that motivate the development of
a domain-specific large language model.

2.1 Human Factors Evidence on Benefits and Risks of Exoskeletons in
Construction

Human factors risk assessments of active back-support exoskeleton across various construction tasks
have demonstrated both biomechanical benefits (Lei et al., 2024; Akinwale Okunola, Akanmu, Jebelli,
& Afolabi, 2025; Sposito, Fanti, Poliero, Caldwell, & Di Natali, 2024) and potential risks (Akanmu et al.,
2024; Akinwale Okunola et al., 2024; Sposito et al., 2024). For instance, Akinwale Okunola, Akanmu,
Jebelli, et al. (2025) evaluated an active back-support exoskeleton during framing tasks and reported
reductions in muscle activity, range of motion, physical exertion, and discomfort. Similarly, Sposito et
al. (2024) found that active back-support exoskeleton use during railway construction reduced
perceived fatigue, while Lei et al. (2025) observed decreased muscle activity and workload during
bending and lifting tasks. However, risks have also been identified. Sposito et al. (2024) reported user
discomfortin the thighs and thermal discomfort during railway construction tasks. Akanmu et al. (2024)
found increased cognitive load associated with active back-support exoskeleton use during carpentry
framing, and Akinwale Okunola et al. (2024) highlighted elevated fall risk during framing tasks. These
findings highlight the complex trade-offs between benefits and risks, emphasizing the need for nuanced
understanding in the selection and adoption of active back-support exoskeleton among construction
stakeholders.

2.2 Stakeholder Perspectives, Adoption Barriers, and the Potential of Artificial
Intelligence for Decision Support

In addition to the task-specific risks and benefits of active back-support exoskeleton, construction
stakeholders hold varying priorities regarding the facilitators and barriers to adoption, which influence
appropriate exoskeleton selection. A. Okunola et al. (2024) examined these factors from the
stakeholders’ perspective, identifying facilitators such as productivity gains, cost-effectiveness, injury
reduction, durability, low cognitive load, posture correction, and ease of maintenance. Reported
barriers included incompatibility with tasks, poor performance on uneven surfaces, excessive weight,
perceived fall risk, restricted mobility, thermal discomfort, and snagging hazards. Similarly, Gutierrez et
al. (2024) identified facilitators, including reduced fatigue, improved task performance, increased
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productivity, standardization of expectations, workforce retention, and positive social perception.
Barriers noted were concerns about hygiene and reuse, heat discomfort, cost sensitivity, fall risk,
mobility limitations, poor fit for female workers, pressure points, durability issues, and bulkiness
(Dunson-Todd, Nik-Bakht, & Hammad, 2025).

While understanding the human factors risks and benefits of active back-support exoskeleton is
important, stakeholder perceptions of adoption facilitators and barriers also play a critical role (Crea et
al., 2021). The ability to synthesize these factors is essential for guiding effective active back-support
exoskeleton selection and supporting broader adoption in the construction industry. LLMs, which are
advanced artificial intelligence pre-trained on an extensive amount of data to synthesize and generate
human-like language (Hadi et al., 2023), presents an opportunity to bridge this synthesis gap. By
translating complex, multi-faceted scientific insights into accessible, actionable narratives, LLMs can
help stakeholders better understand the nuanced trade-offs involved in active back-support
exoskeleton adoption. Beyond general application, these models are known for their ability to be fine-
tuned for a specific domain purpose, providing in-depth knowledge in a particular area, which often
outperforms their general-purpose counterparts (Hadi et al., 2023). For example, Pu et al. (2024) fine-
tuned a pretrained GPT-40-mini for driving AutoRepo, a system that uses construction information to
generate periodic inspection reports, which could help stakeholders in understanding the status of
construction activity on site. Koppel et al. (2024) fine-tuned GPT-4 to function as a virtual risk analysis
assistant, specifically designed to support ergonomic risk assessments within the construction
industry. These examples demonstrate the feasibility of domain-specific fine-tuning for construction
safety applications. However, unlike prior efforts focused on general safety reporting or risk
assessment, the domain of exoskeleton adoption presents a unique challenge that spans
biomechanics, cognitive ergonomics, sociotechnical dynamics, and economic considerations. A
domain-specific model for active back-support exoskeleton adoption must therefore be trained on
datasets that capture not only scientific literature but also stakeholder perceptions and task-specific
constraints.

2.3 Research Gap

Although these studies highlight the feasibility of adapting LLMs for targeted applications, the
effectiveness of such models is largely determined by the relevance of the selected datasets. Unlike
other subsets of artificial intelligence, such as machine learning, LLMs require datasets primarily in text
form rather than continuous sensor data. Synthesizing peer-reviewed documents in a domain area has
been used for fine-tuning LLMs to become experts in that domain (Susnjak et al., 2025). For example,
Susnjak et al. (2025) fine-tuned GPT-3.5 using a curated dataset derived from seventeen peer-reviewed
biomedical studies, enabling the model to more effectively synthesize and interpret medical literature.
Given that LLMs can be adapted for specific domains, approaches such as Supervised Fine-Tuning,
which involves training on labelled data, and RAG, which enables inference from external documents,
each have limitations (Chung et al., 2024; Zhang et al., 2024). Supervised Fine-Tuning may lead to
hallucinations due to overfitting, while Retrieval-Augmented Generation can introduce inaccuracies
through the retrieval of irrelevant or misleading documents. To address these issues, Zhang et al. (2024)
proposed RAFT, which combines the strengths of both methods. RAFT improves accuracy and reduces
hallucinations by training the model to selectively use relevant retrieved content. The authors describe
Supervised Fine-Tuning as similar to preparing for a closed-book exam, Retrieval-Augmented
Generation as an open-book exam without preparation, and RAFT as a combination of both—studying
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for the exam while also having access to the book, ensuring more reliable and contextually grounded
outputs. This study builds on these advancements by employing the RAFT methodology to curate,
synthesize, and fine-tune a domain-specific LLM that captures the breadth of biomechanical, cognitive,
and stakeholder factors influencing active back-support exoskeleton adoption in construction. This
approach aims to provide stakeholders with an Artificial Intelligence-driven tool capable of generating
contextually relevant, evidence-based recommendations adapted to the multifaceted realities of
construction environments.

3 Methodology

Figure 1 presents the overall workflow, which is structured into four sequential stages: (1) literature

é LITERATURE A é DATA h ( MODEL FINE- ) é MODEL A
REVIEW PREPARATION AND TUNING EVALUATION
eSearch databases PREPROCESSING *Model *Metrics
eKeywords *Manual review eDataset split eFramework
Selection *Extracted insights eParameters «Criteria
«Criteria *Generated QA eOutcome eComparison
eTasks pairs Evaluator
: eFeatures
\-Dewces ) \ ) \ ) \'Sample )

review, (2) data preparation and pre-processing, (3) fine-tuning of a domain-specific large language
model, and (4) model performance evaluation.

Figure 1. Overview of methodology.
3.1 Literature Review

The first stage consisted of a review of peer-reviewed studies to compile a dataset on the biomechanical
benefits, human factors risks, and adoption considerations of active back-support exoskeletons in
construction. Searches were performed across Google Scholar, ScienceDirect, IEEE Xplore, and the
American Society of Civil Engineers Library using combinations of keywords including “active
exoskeletons AND construction”, “powered exoskeletons AND construction”, and “wearable robotic
devices AND construction”. A total of 20 studies, published between 2022 and 2025, were selected
according to inclusion criteria that emphasized evaluations of active back-support exoskeletons across
diverse construction tasks. Selection prioritized articles reporting both objective biomechanical
metrics (e.g., electromyographic activity and kinematic range of motion) and subjective measures (e.g.,
perceived discomfort and cognitive load), in line with best practices in applied human factors research.
The reviewed tasks included manual material handling, carpentry, railway maintenance, masonty,
flooring, rebar tying, overhead drilling, dynamic lifting, and load carrying. Exoskeletons covered
spanned commercially available systems (e.g., Cray X, Iron Hand, Apogee, StreamEXO, and soft robotic
suits) as well as laboratory-developed prototypes.

3.2 Data Preparation and Preprocessing

The second stage involved transforming insights from the reviewed studies into a dataset suitable for
RAFT. Each paper was manually reviewed to ensure core findings related to the biomechanical,
psychological, and physiological implications of exoskeleton use are represented in the studies. For
example, findings such as “active back-support exoskeletons reduce lumbar strain but increase
shoulder discomfort during prolonged tasks” were reviewed. From each of the identified studies,
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practitioner-oriented Q&A pairs were generated (e.g., “What is the reduction in lumbar range of motion
when using a back-support exoskeleton?”), with answers synthesizing empirical evidence, references,
and Chain-of-Thought reasoning to approximate expert logic. A total of 3,650 Q&A pairs were produced
using the RAFTDataGen algorithm, powered by the GPT-40 model on Microsoft Azure’s Al cloud
infrastructure. This algorithm supports the incorporation of distractors and explicit reasoning chains,
ensuring dataset richness and reducing overfitting (Wu, Ding, Shen, & Tao, 2025). The resulting dataset
size substantially exceeded comparable RAFT-based fine-tuning studies in adjacent domains (Sager,
Cabaza, Cusack, Bass, & Dominguez, 2024; Shi, Kazda, Schmitter, & Gupta, 2025), strengthening model
generalizability.

3.3 Model Fine-Tuning

The curated dataset was used to fine-tune GPT-40-mini, a lightweight variant of GPT-40 optimized for
speed and reasoning depth in applied decision-support contexts. The datasetwas splitinto 70% training
(8,030,685 tokens), 15% validation, and 15% testing subsets. Training followed OpenAl’s recommended
fine-tuning procedures, with a batch size of 32, a learning rate of 5 x 107°, and three epochs to balance
convergence and generalization. RAFT fine-tuning enabled the model to internalize domain-specific
reasoning patterns, such as linking electromyographic evidence of muscle fatigue with subjective
reports of discomfort. This capacity is particularly critical for construction safety decision-making,
where real-time sensor data are limited and perceptual insights must be inferred.

3.4 Model Evaluation

The performance of the fine-tuned model was first assessed using automated metrics, including
validation accuracy and loss curves. In addition, the LLM-as-a-Judge framework was employed, which
involves using independent LLMs to evaluate the outputs of the fine-tuned model (Zheng et al., 2023).
This method has been shown to achieve up to 80% agreement with human raters and is valued for its
scalability, consistency, and cost-effectiveness in evaluating LLM outputs (Zheng et al., 2023). Although
human judgment remains the gold standard due to its nuanced contextual understanding, LLM-as-a-
Judge provides an efficient alternative for large-scale evaluation. A single-answer grading protocol, as
proposed by Zheng et al. (2023), was adopted, in which model responses were scored against
predefined criteria. The evaluation dimensions included coherence (clarity and structure of the
response), relevance (alignment with the prompt), completeness (coverage of essential points), factual
accuracy (truthfulness of content), and harmlessness (absence of harmful or biased information). This
framework has been widely adopted in recent fine-tuning studies (Saroufim et al., 2025). For the
evaluation, 20 Q&A pairs were randomly sampled from the reserved 15% test set. These queries were
presented to both the fine-tuned model and the baseline GPT-40-mini via the Microsoft Azure
Playground. Outputs from each model were then independently scored by LLaMA 4, which served as
the evaluation agent. Scores across criteria were aggregated, and results were compared to determine
the performance gains of the fine-tuned model relative to the baseline.

4 Results

This section presents the results of the study, encompassing both the findings from the literature review
and the performance evaluation of the fine-tuned model.

4.1 Literature Review

Proceedings of Smart and Sustainable Built Environment Conference Series SASBE2025 389 | 394



Akinwale Okunola', Abiola Akanmu?, Houtan Jebelli®

The literature review process identified twenty peer-reviewed studies, which collectively advanced
understanding of the biomechanical effects of active back-support exoskeletons in construction and
the sociotechnical factors shaping their adoption. Across these studies, common biomechanical
metrics included reductions in muscle activity (via electromyography), improvements in range of
motion, and decreases in perceived discomfort and exertion. For example, Akinwale Okunola, Akanmu,
Jebelli, et al. (2025) demonstrated significant reductions in lumbar muscle activation during framing
tasks, while (Sposito et al., 2024) reported decreased fatigue in railway construction when using active
back-support exoskeletons. At the same time, challenges such as increased cognitive workload,
thermal discomfort, and restricted mobility. Factors that may increase fall risks were also documented
(Akinwale Okunola et al., 2024; Sposito et al., 2024). In addition to physiological and ergonomic
evaluations, the studies highlighted adoption facilitators and barriers from multiple stakeholder
perspectives. Facilitators included productivity gains, reductions in worker compensation claims,
posture correction, device durability, and ease of maintenance. Barriers included task-device
incompatibility, restricted mobility, excessive device weight, thermal discomfort, and hygiene concerns
associated with shared use. These findings underscore the multifaceted nature of integrating active
back-support exoskeletons into construction workflows and the need for decision-support tools that
synthesize both quantitative biomechanical data and qualitative stakeholder insights.

4.2 Model Fine-Tuning Performance

Following dataset preparation, the RAFT-based fine-tuning of GPT-40-mini was successfully completed
on the curated dataset of 3,650 Q&A pairs. The model achieved validation accuracy of 88% by the third
epoch, indicating stable learning and effective generalization without notable overfitting, as shown by
the lowvalidation loss. The RAFT framework’s integration of distractor documents and Chain-of-Thought
reasoning enhanced contextual discernment, enabling the model to separate relevant biomechanical
insights from unrelated content. This improvement translated into more nuanced, task-specific
recommendations for active back-support exoskeleton deployment in construction scenarios.

4.3 LLM-as-a-Judge Evaluation

The LLM-as-a-Judge evaluation offered a detailed comparison of the fine-tuned GPT-40-mini and the
base model across 20 randomly selected Q&A pairs. As shown in Figure 2, the fine-tuned model
outperformed the base model across all metrics. Specifically, it achieved perfect scores of 5 out of 5 on
coherence, relevance, and harmlessness. This indicates consistently clear, contextually appropriate,
and safe outputs. On completeness, the fine-tuned model scored 4.8 (96%) compared to 4.3 (86%) for
the base model, demonstrating its ability to deliver more comprehensive answers that connected
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biomechanical outcomes with adoption concerns. For factual accuracy, the fine-tuned model achieved
4.1 (82%), slightly higher than the base model’s 4.0 (80%). These results confirm the RAFT framework’s
effectiveness in embedding domain-specific expertise into a compact, deployable model.

Figure 2. Performance evaluation.

5 Discussion

The development and evaluation of the fine-tuned LLM in this study introduce an Al-driven approach to
supporting the selection and adoption of active back-support exoskeletons in construction. The
model’s ability to synthesize biomechanical insights alongside stakeholder priorities addresses a
critical gap in current exoskeleton evaluation frameworks, which often emphasize either physiological
metrics or qualitative perceptions inisolation (De Looze, Bosch, Krause, Stadler, & O’Sullivan, 2016). By
integrating these dimensions, the fine-tuned model provides a holistic lens through which professionals
can evaluate trade-offs in active back-support exoskeleton deployment.

The literature review formed a critical empirical foundation, ensuring that the training data reflected the
multifaceted impacts of active back-support exoskeletons—from muscle activity and range of motion
to cognitive workload and fall risk. For example, reductions in muscle activation ranging from 12-22%
during manual material handling tasks have been documented (Lazzaroni et al., 2020), while decreases
in range of motion are also evident in carpentry (Akinwale Okunola, Akanmu, Jebelli, et al., 2025) and
flooring tasks (Akinwale Okunola, Akanmu, & Yusuf, 2023). Equally important, the synthesis of
facilitators and barriers from diverse stakeholders added a practical layer that is often
underrepresented in biomechanical research. This dual perspective enabled the model to produce
recommendations that are both scientifically grounded and operationally relevant. The RAFT-based
fine-tuning demonstrated the value of combining teacher-student distillation with domain-specific
datasets. The resulting validation accuracy of 88%, along with qualitative improvements in
completeness and factual accuracy, indicates meaningful gains over general-purpose LLMs. Such
enhancements are vital for decision-support applications, where comprehensiveness and factual
precision underpin trust and compliance (Bommasani, 2021). The LLM-as-a-Judge evaluation further
reinforced these strengths, particularly in generating coherent, relevant, and safe outputs. Research
has shown that powerful LLMs like GPT-4 can align with human preferences over 80% of the time in
evaluations (Zheng et al., 2023). Nonetheless, LLM-based evaluators remain prone to biases (e.g.,
position bias, verbosity bias, and self-enhancement bias) as well as limited reasoning consistency
(Zheng et al., 2023). These findings suggest that while LLM-as-a-Judge offers a cost-effective alternative
to human evaluation, careful prompt engineering and bias mitigation are essential.

From a practical standpoint, the fine-tuned model represents a pathway toward integrating artificial
intelligence into construction safety and ergonomics planning. By enabling stakeholders to query the
model on task-specific active back-support exoskeleton recommendations, cognitive risks, and
adoption barriers, organizations can make data-driven decisions that balance productivity with worker
well-being. The lightweight architecture of GPT-4o0-mini further supports deployment in resource-
constrained environments such as mobile or on-site decision aids. Nonetheless, limitations remain.
The model’s knowledge is bounded by the breadth of available literature, which, though comprehensive,
may not fully capture emerging device technologies or contextual nuances such as environmental
hazards and workforce diversity (e.g., gender-specific ergonomic responses). Additionally, while the
RAFT framework reduced hallucinations, residual inaccuracies persist, as reflected in factual accuracy
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scores. These challenges point to the need for ongoing dataset expansion, iterative retraining, and user-
in-the-loop mechanisms to refine reliability over time. Furthermore, given the documented biases in
LLM-as-a-Judge evaluations (Zheng et al.,, 2023), future work should incorporate human expert
validation or ensemble judging strategies to bolster evaluation robustness.

6 Conclusions

This study introduced a domain-specific LLM fine-tuned with the RAFT framework to synthesize
biomechanical insights and sociotechnical factors influencing active back-support exoskeleton
adoption in construction. By curating a dataset of 3,650 Chain-of-Thought Q&A pairs derived from
twenty peer-reviewed studies, the model embedded empirical evidence and stakeholder perspectives.
The fine-tuned GPT-40-mini achieved 88% validation accuracy and outperformed the base model on
completeness and factual accuracy, as validated through LLM-as-a-Judge evaluation. The model
provides a scalable decision-support tool that assists construction professionals, ergonomists, and
safety officers in evaluating task-specific suitability of active back-support exoskeletons. However, the
model’s insights remain constrained by the scope of available literature and may not reflect rapidly
evolving technologies or diverse construction contexts. While RAFT minimized hallucinations,
consistently high factual accuracy remains a challenge in domains requiring interdisciplinary
reasoning.

Future research should expand the dataset to cover additional exoskeleton types (e.g., upper-limb
supports and multi-joint exosuits), integrate multimodal data (e.g., sensor streams, real-time usage
analytics, and environmental factors), and develop human-in-the-loop systems to combine Al
recommendations with expert oversight. These steps would improve precision, adaptability, and
trustworthiness. This study establishes a foundation for the intelligent integration of Al and
biomechanics in construction, advancing safer, more ergonomic work environments through
technology-informed decisions. Continued progress in this direction may accelerate the responsible
adoption of wearable robotics across physically demanding industries, contributing to long-term
occupational health and productivity gains.
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