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Urban floods are becoming increasingly frequent due to intensified extreme rainfalls and 
ongoing urbanization, posing significant threats to both human life and the built 
environment in cities worldwide. Timely, high-resolution data on infrastructure damage 
during such events is essential for effective emergency response and long-term adaptation 
planning. However, conventional data collection methods often fail to capture large-scale 
and event-specific impacts. In contrast, social media have emerged as a publicly available 
source of real-time user-generated observations, which can complement current flood 
monitoring approaches. This study proposes a novel approach to automatically extract 
structured infrastructure damage information from social media posts related to flood 
events. A prompt engineering strategy for Large Language Models (LLMs), guided by a 
domain-specific ontology of infrastructure assets and damage typologies, is developed to 
ensure classification consistency and extraction reliability. A case study of the Zhengzhou 
“7·20” flood event in China illustrates the effectiveness of the proposed method. The 
findings demonstrate that while the LLM-based approach achieves high precision, its overall 
performance is constrained by the model’s limitations in processing long-form texts. 
Nevertheless, this research marks a significant step towards leveraging LLMs for real-time 
disaster response. The proposed method can directly assist urban emergency managers by 
enabling the rapid collection of social media-based disaster information, thereby 
complementing conventional approaches. Moreover, it provides a scalable foundation for 
developing essential infrastructure damage databases, which are vital for advancing 
research on infrastructure resilience and informing downstream analyses. 
 

 

 
Keywords:  infrastructure damage; resilience; flood; large language model; information 
extraction  

 Highlights  
• A novel LLM-based approach for structured information extraction from social media 

during floods 
• A domain-specific ontology is developed to guide LLM for reliable and consistent 

extractions 
• Demonstrated LLM’s precision in information extraction while identifying its limitations in 

handling long-form texts.  
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1 Introduction  
Floods are becoming increasingly frequent due to climate change and ongoing urbanisation, posing 
significant threats to both human life and the built environment in cities worldwide [1, 2]. According to 
Centre for Research on the Epidemiology of Disasters (CRED) [3], 142 flood events occurred globally in 
2024, affecting 48.8 million people with 5 883 deaths, ranking the first among all the disaster types, 
and causing USD 32.8 billion economic losses, ranking the second. Infrastructure, such as roads, 
bridges, railways, power stations, and hospitals, is particularly susceptible to damages or loss of 
function during floods, which can severely disrupt societal operations. For instance, the 2024 Spanish 
floods destroyed at least 232 kilometres of road and rail tracks [4]. In Valencia region, 155,000 homes 
lost the access to electricity and the malfunction of telephone networks and flooded roads further 
hampered the efforts to reach stricken communities [5].  

Rapid information collection on infrastructure damage is crucial for efficient disaster response 
following a flood event. Existing flood monitoring approaches mainly include manual inspection, 
sensor-based methods, and remote sensing [6-8]. However, these approaches have their own inherent 
limitations or challenges in practice. For example, while manual inspections offer flexibility, they are 
labour-intensive, inefficient, and limited in scope, thus hindering timely responses to large-scale 
flooding. Hydrological sensors, conversely, are capable of producing high-precision, real-time data, 
but their utility is constrained by considerable deployment costs and limited spatial coverage. Remote 
sensing imagery, including both optical and radar types, provides extensive flood monitoring 
capabilities; however, its effectiveness is compromised by factors such as atmospheric conditions, 
ground occlusion, and imaging artefacts that may lead to misclassification of inundated areas [8].  

Social media, as a form of publicly crowdsourced data, can complement current flood monitoring 
approaches [8, 9]. During flood events, individuals frequently post real-time observations and 
experiences about the events on social media platforms. Unlike the physical signals monitored by 
sensors, social media text reflects people’s subjective perception, focusing more on the societal 
impacts of floods. Despite challenges such as unstructured formats, subjective biases, and the risk of 
misinformation, social media posts offer valuable insights into overlooked or locally specific flood 
impacts, and therefore serve as a crucial complement to conventional monitoring systems. 

Relevant research interests include hazard assessment, flooding area identification, water depth 
estimation, and sentiment analysis [8-12], all of which involve extracting impact-related information 
from social media posts. There are also some explorations looking into infrastructure damage during 
floods. For instance, Zhang, et al. [13] proposed a taxonomy of community disruption events, such as 
flood control infrastructures, transportation, housing, and utilities and supplies, to categorise tweets 
for societal impact assessment. Mihunov, et al. [14] applied latent Dirichlet allocation (LDA) topic 
modelling to subset the Twitter data related to infrastructure, the outcomes of which were used for 
further analyses of temporal and spatial patterns. However, existing infrastructure-related studies on 
social media primarily focus on event categorisation, with limited attention to the detailed 
characterisation of flood-induced impacts on infrastructure (e.g., the type of infrastructure affected 
and the nature of the damage). This gap constrains a nuanced understanding of infrastructure 
resilience to flooding.  

Conventional information extraction methods from social media, such as keyword matching or 
traditional machine learning classifiers, often struggle with the short, noisy, and non-standard nature 
of microblogs [15, 16]. Large language models (LLMs), which have demonstrated remarkable ability in 
processing natural language [17], have been employed in structured information extraction from 
various texts [18, 19]. Similar attempts have also been made in flood contexts, where LLMs were used 
to extract flooding depth and the number of people trapped [20]. However, to our knowledge, no 
studies have addressed the extraction of detailed, infrastructure damage-related information from 
social media during floods using LLMs. 
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This study aims to fill this critical gap by proposing an LLM-based approach to extract structured 
infrastructure damage-related information from social media during flood events. A domain-specific 
ontology of infrastructure assets and damage typologies is developed to guide the information 
extraction process. The outcomes of this study will enable urban emergency managers to rapidly 
collect and synthesise disaster information from social media, serving as a valuable complement to 
conventional approaches. Furthermore, the proposed approach supports the development of flood-
related infrastructure damage databases from public sources, which are critically needed for 
advancing research on infrastructure resilience.  

2 Methodology  

2.1 Data Preparation  
The Zhengzhou “7·20” flood event was selected as the case study for this research. From 18:00 on 18 
July to 00:00 on 21 July 2021, the city of Zhengzhou experienced an extreme rainfall event that caused 
widespread disruption, affecting approximately 14.79 million people and resulting in direct economic 
losses of 120.06 billion yuan [20].  

To build a relevant dataset, Weibo posts were collected using an open-source web-scraping tool 
“Weibo-search”1and a keyword-based search approach. Weibo, a prominent Chinese social media 
platform, had approximately 570 million monthly active users during the event period[21]. Posts 
spanning from 14 to 28 July 2021 were initially collected using the search term “Zhengzhou heavy rain”. 
A subsequent refinement step was then employed to filter the retrieved texts for relevance to 
infrastructure damage. Specifically, a post was selected if it contained both infrastructure-related 
nouns (e.g., “road”, “water supply”) and damage-related verbs (e.g., “flood”, “collapse”). A further 
manual refinement was conducted to select posts with clearer descriptions of infrastructure damage 
events, particularly those that explicitly mentioned the location, infrastructure type, and the nature of 
the structural or functional damage. This process resulted in a final dataset comprising 138 Weibo 
texts. 

Each of the selected Weibo texts was then manually annotated with structured information, including: 
(1) temporal attributes: date, time, and time type; (2) locational attributes: city and location; (3) 
hierarchical infrastructure types: infrastructure types L1-L3; and (4) hierarchical damage types: 
damage types L1-L2. The structure of these labelled fields is further detailed in Table 1. If a single 
Weibo text described multiple distinct infrastructure damage events, each event was individually 
identified and annotated, all linked to the original post. In total, 787 distinct events were annotated, 
creating a comprehensive ground-truth dataset for validating the proposed information extraction 
approach. 

Table 1. Fields of the labelled Weibo texts 

Field Description 
Date The date when the event happened. The post date would be applied if the event date was not reported 
Time The time when the event happened. The post time would be applied if the event time was not reported. 
Time type Labelled as “reported” if both the date and time of the event were reported, otherwise as “post time” 
City The city where the event happened 
Location The detailed location of the event 
Infrastructure type L1 The first level of the infrastructure type 
Infrastructure type L2 The second level of the infrastructure type 
Infrastructure type L3 The third level of the infrastructure type 
Damage type L1 The first level of the damage type 
Damage type L2 The second level of the damage type 

 
1 https://github.com/dataabc/weibo-search 
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2.2 Ontology Design 
To guide the LLM-based structured information extraction, a domain-specific ontology was developed. 
This ontology comprises two primary components: infrastructure types and damage types. 

The infrastructure ontology is hierarchically structured into three levels (L1-L3). Level 1 (L1) refers to 
the main categories of infrastructure, including transportation systems, power systems, water supply 
systems, drainage systems, energy systems, telecommunication systems, and building systems. Level 
2 (L2) and Level 3 (L3) represent sub-categories. For example, within transportation systems, L2 and L3 
could specify roads and traffic lights, respectively. For water supply systems, L2 and L3 could detail 
water plants and pumps. 

The damage ontology is similarly divided into two hierarchical levels (L1 and L2). L1 indicates the basic 
types of damage, which are classified into three main categories: structural damage, with L2 subsets 
of "damaged" and "collapsed"; functional damage, with L2 subsets of "partially functional" and "non-
functional"; flooding, with L2 subsets specifying a series of water depth ranges. 

This comprehensive ontology serves as a predefined schema that is embedded within the LLM’s 
prompt. This enables the model to extract information from the Weibo texts and map it to a structured, 
consistent format, ensuring the output is both relevant and coherent. 

2.3 Information Extraction 
The LLM “Qwen-turbo” API2, developed by Chinese company Alibaba Cloud, was selected in this study 
given the cost, stability, and support for Chinese language. To ensure the consistent and accurate 
extraction of structured information from Weibo texts, this study designed a modular prompt 
framework tailored for the LLM. The prompt comprised six interrelated components. First, the task 
definition specified the model’s role and overarching objective, thereby constraining its focus to event 
identification and information extraction. Second, a set of core rules established the fundamental 
principles of extraction, covering event segmentation, filtering, and merging. Third, the ontology 
designed in Section 2.2 was embedded to provide a structured dictionary for classifying infrastructure 
and damage types, which served as the backbone of the extraction process. Fourth, field-specific 
rules outlined additional instructions for information retrieval and prescribe the required output 
format for the fields “Date”, “Time”, “Time type”, “City”, and “Location”. Fifth, the output structure 
enforced a reasoning process prior to the final answer, ensuring that the model demonstrated its 
intermediate reasoning steps before presenting the structured output. Sixth, representative examples 
were incorporated to guide the model’s responses through demonstration, followed by an explicit 
execution trigger that initiated the processing of Weibo data. Collectively, this layered prompt design 
enhanced the reliability, robustness, and transparency of LLM-driven information extraction task. 

2.4 Performance Evaluation 
Due to the fact that the number of identified events from one Weibo text by the LLM may not match the 
number of the true events, it is not feasible to evaluate the performance of the information extraction 
by simply comparing the identified event with the truth one by one. This study employed a matching 
strategy that paired identified events with their corresponding ground-truth events. Since each event 
has ten fields, a similarity score was calculated between each identified and true event, by summing 
up the scores of the fields where the identified and true events shared the same values. For the 
“Location” field, the fuzz.ratio function3 was employed to quantify the similarity considering non-
standard descriptions of locations. This string similarity measure is based on edit distance and 
provides a straightforward and computationally efficient way to capture the overlap between two texts. 

 
2 https://qwen.ai/apiplatform 

3 https://github.com/seatgeek/thefuzz 
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The score allocated to each field can be found in Table 2. The score for “Location” was set the highest 
as the location was regarded as the identifier of an event. Fields “Date”, “Time”, “Time type”, and “City” 
were given small scores as they had less importance in information than infrastructure types and 
damage types. The matching algorithm determined an optimal one-to-one matching that maximised 
the total similarity across all pairs, ensuring that each predicted event was paired with at most one 
true event. Unmatched events are treated as false positives or false negatives.  

Table 2. Score for each field 

Field Score 
Date 0.25 
Time 0.25 
Time type 0.25 
City 0.25 
Location 5.00 
Infrastructure type L1 1.00 
Infrastructure type L2 1.00 
Infrastructure type L3 0.50 
Damage type L1 1.00 
Damage type L2 0.50 

 

3 Results 
The results of the structured information extraction task are presented in Table 3. True Positives (TP) 
are defined as events that were correctly identified by the LLM. Due to the challenge of correctly 
extracting information for all fields, an event was classified as a TP if its evaluation score was 8.25 or 
above. This scoring criterion ensured that (1) the location information was correct and (2) the model 
did not simultaneously misclassify both the infrastructure and damage types (L1), thereby ensuring 
the extracted event was sufficiently informative. False Positives (FP) represent events that the LLM 
incorrectly identified, while False Negatives (FN) represent events that the model failed to identify. The 
True Negative (TN) set was empty, as all texts in the ground-truth dataset corresponded to actual 
infrastructure damage events. 

Table 3. Statistics of information extraction results 

Item Value 
TP 497 
FP 210 
TN 0 
FN 290 

To evaluate the performance of the proposed approach, four standard metrics were employed: 
accuracy, which measures the proportion of all correct classifications; precision, which quantifies the 
proportion of positive classifications that are genuinely positive; recall, which measures the 
proportion of actual positive events that were correctly identified; and the F1 score, the harmonic 
mean of precision and recall. The values of the metrics were calculated as below based on the values 
from Table 3.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
= 49.8% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 70.3% 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 63.2% 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 66.5% 
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The results show that the model achieved a relatively high precision of over 70%, indicating that the 
information it did extract was of moderate to high quality. However, the lower recall (63.2%) and 
accuracy (49.8%) suggest that the model missed a significant number of events (high FN) and made 
numerous incorrect classifications (high FP). The low accuracy is particularly notable due to the 
substantial numbers of both FP and FN. 

Furthermore, a more granular analysis was conducted to investigate the model’s performance on 
different infrastructure and damage types (L1), with the recall values shown in Table 4.  

The LLM demonstrated varied performance across different categories. The results in Table 4 indicate 
that the LLM performed exceptionally well in identifying damage to power systems (92.9%) and energy 
systems (100.0%), and quite well for building systems (82.3%). In contrast, its performance was 
significantly lower for transportation (58.2%) and water supply systems (61.5%). Notably, the model 
completely failed to identify any events related to drainage systems (0.0%) since there were only two 
drainage systems-related events in the ground-truth dataset. Regarding damage types, the model 
achieved the highest recall for flooding (70.0%), which is understandable given that keywords related 
to flooding (e.g., “flooding,” “waterlogging”) are more consistently and explicitly mentioned in social 
media texts than the diverse and often more ambiguous keywords associated with structural or 
functional damage. 

Table 4. Recall values for different infrastructure and damage types 

Data field Category Recall value Average recall value 
Infrastructure type L1 Transportation system 58.2% 68.1% 

Power system 92.9% 
Water supply system 61.5% 
Drainage system 0.0% 
Energy system 100.0% 
Telecommunication system 66.7% 
Building system 82.3% 

Damage type L1 Structural damage 65.6% 67.2% 

Functional damage 66.1% 

Flooding 70.0% 

 

4 Discussion  
This study presents a novel LLM-based approach for structured information extraction from social 
media during flood events. The results, while validating the model’s potential, also highlight several 
key performance challenges.  

The initial performance metrics revealed a notable disparity between the model’s precision and recall, 
with a high number of FN. Upon closer investigation, it was found this was primarily due to the LLM’s 
inability to fully process long Weibo posts. Two particularly lengthy posts, each over 1,900 Chinese 
characters and containing summaries of multiple events, were responsible for a substantial portion of 
these missed extractions - the LLM was able to correctly identify only approximately 20% of the events 
within these lengthy texts. 

To understand the impact of this limitation, these two long texts were removed from the ground-truth 
dataset, and the performance metrics were re-calculated, as shown in Table 5. The results 
demonstrate a dramatic improvement across most metrics - the accuracy, recall, and F1 score 
increased significantly to 60.0%, 81.9%, and 75.0%, respectively. This finding clearly demonstrates 
that the LLM’s context window limitation is the main bottleneck for performance. 

In addition, while the model demonstrated good performance on certain infrastructure types like 
energy (100% recall) and power systems (92.9% recall), its lower scores on others, such as 
transportation (58.2% recall), indicate that performance is highly dependent on the nature and 
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consistency of the language used in the posts. This suggests that the model’s effectiveness is tied to 
how explicitly and uniformly the public describes different types of infrastructure damage. 

Table 5. Results of information extraction after the removal of two long texts 

Item Value Change 
TP 461 -36 
FP 205 -5 
TN 0 0 
FN 102 -188 
Accuracy 60.0% 10.2% 
Precision 69.2% -1.1% 
Recall 81.9% 18.7% 
F1 Score 75.0% 8.5% 

 

5 Conclusions  
In this study, an LLM-based approach was developed to extract structured infrastructure damage 
information from social media posts during flood events. The methodology involved creating a 
domain-specific ontology for infrastructure and damage types, which was used to guide the LLM’s 
extraction process. This approach was applied to a real-world dataset of Weibo posts from the 
Zhengzhou "7·20" flood event. The results demonstrated that while the model achieved a respectable 
precision of over 70%, its overall performance was significantly impacted by its inability to process 
long-form texts, a common characteristic of social media summaries. 

This study marks a significant step towards leveraging LLMs for real-time disaster response. The 
proposed method can directly assist urban emergency managers by enabling the rapid collection of 
social media-based disaster information, thereby complementing conventional approaches. 
Moreover, it provides a scalable foundation for developing essential infrastructure damage databases, 
which are vital for advancing research on infrastructure resilience and informing downstream 
analyses. Moving forward, the following research plans to address the identified limitations by 
exploring advanced prompt engineering techniques, such as chunking for long texts, and investigating 
the potential of fine-tuning smaller and specialised LLMs for enhanced performance and robustness. 
The development of more adaptive ontologies that account for the nuances of human language also 
remains a key priority. 
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