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Abstract

Communities within the wildland-urban interface (WUI) are increasingly exposed to severe
and frequent wildfire threats driven by climate change, land-use change, and expanding
urban development. Traditional fire management approaches have proven inadequate to
address the complex interactions of fire behavior, human exposure, and infrastructure
vulnerability. Emerging digital technologies, particularly Building Information Modeling (BIM)
and digital twins, offer opportunities to enhance WUI resilience by enabling data-rich,
predictive, and adaptive strategies for preparedness and response. This review synthesizes
research on integrating BIM, digital twins, and artificial intelligence (Al) to support wildfire
modeling, risk assessment, situational awareness, and recovery. A systematic review of 71
peer-reviewed studies revealed a geographically diverse but uneven landscape, concentrated
in North America. Most studies addressed mitigation, with limited attention to
evacuation/response or recovery. Four thematic applications emerged: predictive wildfire
modelling, sensor-based environmental monitoring, structural vulnerability assessment, and
evacuation planning. Predictive modelling dominated, while BIM and digital twin applications
remained sparse and poorly integrated. Key enablers included advances in Al/ML algorithms,
cloud/edge computing, and visualization platforms. Persistent barriers involved
interoperability gaps, computational demands, dependence on historical datasets, and
limited attention to governance, equity, and trust. In response, this study proposes a layered
conceptual framework positioning BIM as a digital foundation, digital twins as adaptive
mirrors, Al/ML as predictive engines, and visualization interfaces as decision-support tools,
embedded within interoperability, security, and governance mechanisms. These insights
provide pathways for advancing digital transformation to strengthen the safety, adaptability,
and sustainability of WUI communities facing escalating wildfire risks.

Keywords: Wildland-Urban Interface; Building Information Modeling; Digital twins;
Artificial intelligence; Data-driven risk management.

Highlights

o Al leads wildfire resilience research, but BIM and digital twin integration is limited.

e Most studies focus on prediction, with recovery and adaptation largely overlooked.

e |nteroperability and governance are key to effective wildfire digital twin systems in WUI.
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1 Introduction

Communities located within the wildland-urban interface (WUI) are increasingly exposed to severe and
frequent wildfire events, driven by the combined effects of climate change, urban expansion, and land-
use transformations (Radeloff et al.,, 2018). These fire-prone zones, where natural vegetation
intermingles with human development, present highly complex fire behavior patterns, putting lives,
critical infrastructure, and ecological systems at elevated risk. Traditional approaches to wildfire
prevention and response, centered on suppression and hazard mitigation, have proven inadequate in
the face of rapidly evolving climate conditions and intensified WUI development pressures (Moritz et
al., 2014). As catastrophic fire events in California, Australia, and southern Europe demonstrate, the
limitations of conventional strategies demand new, adaptive approaches.

Advances in digital technologies offer a potential paradigm shift for addressing wildfire threats in WUI
communities. Building Information Modeling (BIM), originally developed to improve collaboration and
information flow across the design and construction lifecycle, provides rich digital representations of
the built environment that can be extended for resilience applications (Succar & Kassem, 2015). Digital
twins expand upon BIM by dynamically connecting these models to real-time data streams from
sensors, loT devices, and remote sensing platforms, thereby enabling continuous monitoring,
prediction, and adaptive management of both individual structures and community systems (Fuller,
Fan, Day, & Barlow, 2020). Artificial intelligence (Al) techniques, including machine learning, computer
vision, and natural language processing, further enhance this potential by delivering predictive
analytics, pattern recognition, and scenario-based reasoning to support timely and effective wildfire
risk decision-making (Reichstein et al., 2019).

Despite these opportunities, the integration of Al, BIM, and digital twins for wildfire resilience in WUI
communities remains fragmented and underdeveloped. Current research is dispersed across domains
such as forestry, civil engineering, and computer science, with limited synthesis of their combined
potential, current progress, and implementation challenges. There is a pressing need to examine how
these technologies can converge to improve wildfire preparedness, emergency response, and post-
event recovery within vulnerable WUl communities. To address this gap, this paper is guided by three
research questions:
e RQ1: How have BIM, digital twins, and Al been applied individually or in combination to support
wildfire resilience in WUI contexts?
o RQ2: What barriers and enablers affect the integration of BIM, digital twins, and Al into wildfire
preparedness, response, and recovery?
e RQ3:What conceptual framework or pathway can advance the deployment of Al-enabled digital
twins in BIM for proactive, adaptive WUI fire management?
The contributions of this review are threefold. First, it synthesizes the fragmented body of knowledge on
BIM, digital twins, and Al applications for wildfire resilience, bridging insights across disciplines.
Second, itidentifies key technicalenablers and barriers, including interoperability challenges, real-time
integration constraints, and the lack of standardized protocols for linking Al models with BIM-based
systems. Third, it develops a conceptual framework to guide future research and practice, offering
directions for how these technologies can transform WUI communities into data-driven, adaptive, and
fire-resilient systems.
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2 Methodology

This study employed a systematic literature review to investigate the intersection of Al, BIM, and digital
twin technologies in the context of wildfire resilience, particularly within WUl communities. The review
design was explicitly structured to address the research questions introduced in Section 1.

2.1 Review Protocol

The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009). A PRISMA flow diagram was
constructed to ensure transparency in documenting the identification, screening, eligibility, and
inclusion stages of the review process (Figure 1). The review was structured around five distinct phases
of fire management: prevention, mitigation, preparedness, response (suppression), and recovery
(learning and adaptation). This phase-based framework, informed by Arango, Nogal, Sousa, Matos, and
Stewart (2024), was used solely for categorization during analysis. The protocol also emphasized
interdisciplinary coverage by including studies from fire science, civil engineering, computer science,

Identification Screening Eligibility Included
Records identified in -‘ (Titles and abstracts) -‘ (Full text) Full text Studies included in
databases and Google Records screened articles assessed - qualitative synthesis

Scholar (n=317) (n=227) (n=288) (n=71)

L 4

Phased based framework
(Categorization only)
* Prevention ¢ Mitigation ® Preparedness ® Response (suppression) ® Recovery
¢ Interdisciplinary scope: fire science, civil engineering, computer science, urban planning

Figure 1. PRISMA Flow Diagram — Systematic review of Al, BIM, and Digital Twin for Wildfire/WUI Resilience.

and urban planning.
2.2 Data Sources and Search Strategy

The literature search was conducted across multiple academic databases, including Scopus, Web of
Science and IEEE Xplore, supplemented by Google Scholar for cross-validation of gray and emerging
literature. The search terms were carefully constructed to reflect the intersection of wildfire resilience
and emerging technologies. Boolean operators and wildcard variations were used to expand coverage.
The search string was: ("wildfire" OR "wildland-urban interface" OR "WUI") AND ("resilien" OR "fire
management") AND ("building information modeling" OR "BIM") AND ("digital twin*" OR "virtual
model*") AND ("artificial intelligence" OR "machine learning" OR "deep learning"). The scope of the
search spanned from 2010 to 2024, a period marked by the rapid evolution of digital twin technologies
and the widespread adoption of Al in environmental modeling. Only peer-reviewed journal articles,
conference proceedings, and high-quality technical reports published in English were retained to
ensure the rigor and comparability of evidence.

2.3 Inclusion and Exclusion Criteria

Studies were included if they addressed: (a) the use of BIM or digital twins for wildfire or WUI resilience;
(b) applications of Al to wildfire risk management; (c) integration of infrastructure modeling with fire
behavior prediction; or (d) frameworks or prototypes relevant to proactive wildfire management. Unlike
many prior reviews that focused exclusively on fire ecology or computational fire science, this review
required explicit attention to the built environment and the socio-technical dimensions of fire resilience.
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Studies were excluded if they considered wildfire ecology in isolation, presented Al algorithms without
hazard application, or examined BIM solely in non-risk management contexts.

2.4 Screening and Selection

The initial search yielded 315 publications. After removing duplicates and conducting a screening of
titles and abstracts, 88 articles were selected for full-text review. Of these, 71 were retained for analysis
after meeting all inclusion criteria. Each article was coded for bibliographic details, research objectives,
methods, technologies used, level of integration, resilience phase addressed, data types used, and
study limitations.

2.5 Data Analysis and Synthesis

The selected studies were analyzed using thematic analysis (Braun & Clarke, 2006). Coding employed
a combined inductive-deductive approach: deductive codes were derived from the research questions
and the phase-based framework to ensure alignment with the study aims, while inductive coding
allowed themes to emerge organically from the data. Codes were grouped into higher-order categories
aligned with the research questions mentioned in Section 1.

3 Results

The systematic review identified 71 peer-reviewed studies that met the inclusion criteria. These studies
collectively span multiple countries, with the majority concentrated in North America, followed by
Australia, Canada, Spain, Chile, and parts of Asia. They represent a diverse range of technological
applications, geographical contexts, and resilience phases, offering a rich but uneven landscape of
innovation at the intersection of Al, BIM, and digital twin technologies for wildfire resilience in WUI
communities. The phase distribution was highly skewed: 60 studies (*85%) addressed mitigation, six
focused on reactiveness (evacuation and response), and only five targeted recovery (post-fire
assessment and adaptation). In line with the research questions in Section 1, the results are organized
into the following sections.

3.1 Applications of Al, BIM, and Digital Twins for Wildfire Resilience

To address RQ 1, the review examined current applications across resilience phases. Four thematic
areas emerged: predictive wildfire modelling (prevention/mitigation), sensor-based environmental
monitoring (detection), structural vulnerability assessment (preparedness), and evacuation planning
(response).

3.1.1 Predictive Wildfire Modelling

Predictive modelling was the dominant theme, with 51 studies (#72%) focused on fire spreading and its
impact on built environments. These studies employed a variety of Al enablers, such as convolutional
neural networks (CNNs), ensemble learning, and graph neural networks (GNNs), to forecast wildfire
spread, ignition probability, and severity. Machine learning (ML) was the most prevalent technology
category (33 ML-only studies), followed by ML+GIS integrations (22 studies), while only a handful
incorporated digital twins (5) or BIM (2). For instance, Shahriar, Choi, and Islam (2025) developed a
hybrid GNN-LSTM framework to forecast the Fire Weather Index across CONUS, achieving high spatial
accuracy but at significant computational cost. Similarly, Gu, Csiszar, Tsidulko, and Guo (2025) used
satellite data and machine learning to estimate fire radiative power, enhancing understanding of fire
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intensity. Other notable approaches include ensemble-based ignition prediction (Tong & Gernay, 2023),
hybrid ML for large-fire projection (Li et al., 2024), and deep learning for ember hotspot prediction on
gable roofs (Al-Bashiti, Nguyen, Naser, & Kaye, 2024). However, most models relied heavily on historical
data, which introduces limitations when fire behavior shifts due to climate change or land-use
alterations. Integration with BIM was minimal. Only two studies (Sun & Turkan, 2020; F. Wang, Xu, Chen,
Nzige, & Chong, 2021) explored BIM for fire safety or evacuation modelling, and none linked regional
hazard forecasts to building-level digital twins. This disconnect highlights a missed opportunity to
translate regional fire dynamics into structure-level risk intelligence.

3.1.2 Sensor-Based Environmental Monitoring

Approximately six studies (9% of the corpus) explored the use of sensor networks, including
Unmanned Aerial Vehicles (UAVs), Internet of Things (loT) devices, and satellite platforms, for real-time
environmental data collection. For example, Fu, Hu, Sutrave, Beerel, and Raghavan (2024) developed
FireLoc, a crowdsensing system that combines ground cameras and landscape data to geolocate
wildfires with low latency. Similarly, Govil, Welch, Ball, and Pennypacker (2020) demonstrated a deep
learning-based smoke detection system using remote camera images, capable of identifying fires within
15 minutes of ignition. UAV-integrated Al systems for firefighter action recognition (H. Wang et al., 2025)
and multi-UAV coverage optimization (Diaz-Vilor, Lozano, & Jafarkhani, 2025) illustrate operational
monitoring advances. Some studies proposed digital twin frameworks that could ingest these sensor
data streams to simulate fire behavior dynamically. Lewis et al. (2024) developed a Fire and Smoke
Digital Twin, integrating air quality, weather, and infrastructure data, while NA, Rajasekar, and
Sarvehswaran (2025) combined loT sensors with a deep CNN in a real-time twin-enabled risk
classification system. Despite these advances, most implementations remained at the conceptual or
pilot scale, falling short of operational maturity.

3.1.3 Structural Vulnerability Assessment

BIM-cantered studies primarily focused on simulating material performance and structural detailing
under fire exposure. Sun and Turkan (2020) developed a BIM-based simulation framework to assess
evacuation safety in buildings, while Al-Bashiti et al. (2024) used deep learning to identify ember
hotspots on rooftops. Despite BIM’s potential for detailed representation, no study demonstrated
dynamic feedback loops between fire progression and structural response within a digital twin
environment. This reveals a critical integration gap: while BIM offers detailed representations of the built
environment, its potential for adaptive risk modelling remains largely untapped.

3.1.4 Evacuation Planning

Evacuation modelling was addressed in eight studies (11% of the corpus), using agent-based
simulations, reinforcement learning, and predictive analytics. Ma and Lee (2024) developed machine
learning models to predict evacuee behavior based on survey data, while Sharma, Andersen, Granmo,
and Goodwin (2020) applied Deep Q-Learning to optimize evacuation strategies in simulated
environments. BIM-enhanced evacuation simulations were explored by F. Wang et al. (2021), who
modelled stair and elevator strategies in a college canteen, and Sun and Turkan (2020), who validated a
BIM-based evacuation framework using the Station nightclub fire case. However, real-time digital twin
applications for evacuation remain absent. Most models were static or scenario-based, lacking
adaptability to evolving fire conditions or incoming sensor data.
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3.2 Enablers and Barriers in Al-BIM-Digital Twin Integration

To address RQ2, the review identified both enabling technologies that support integration and barriers
that constrain their effective deployment. Several enabling technologies emerged across the literature.
These include cloud and edge computing for data processing, algorithms (e.g., GNN-LSTM, ULSTM, and
hybrid deep learning), and visualization platforms for geospatial overlays and interactive decision
support. Forinstance, C. Zhang, Cheng, Kasoar, and Arcucci (2022) combined reduced-order modelling
with LSTM and data assimilation to improve real-time wildfire forecasting. Augmented reality was
explored for UAV-based fire prevention (Costa et al., 2025), while YOLO-DeepSORT frameworks were
integrated into digital twins for real-time occupant tracking (Ding, Zhang, & Huang, 2023). Despite
promising developments, recurring challenges were evident. Foremost was the lack of standardized
interoperability protocols, which constrained meaningful integration of BIM and real-time sensor data
into cohesive digital twin environments. Technical bottlenecks included (i) computational intensity of
high-resolution ML and digital twin models, (ii) dependence on historical datasets that may not reflect
future fire dynamics, and (iii) cybersecurity vulnerabilities in digital twin deployments (Lewis et al., 2024;
NA et al., 2025). Social and institutional dimensions were also underexplored. Only a handful of studies
acknowledged governance, equity, or community trust issues, despite their critical role in WUI
resilience.

3.3 Conceptual Framework

Building upon the thematic synthesis of the literature and in response to RQS3, this study advances a
conceptual framework (Figure 2) to guide the integration of Al, BIM, and digital twins in enhancing
wildfire resilience within WUl communities. The framework envisions a layered and interoperable
system that continuously monitors, predicts, and responds to wildfire hazards while simultaneously
supporting long-term community adaptation. The framework is motivated by evidence that most
existing work concentrates on hazard modelling at regional scales, with limited coupling of BIM and
digital twins, highlighting the need for end-to-end integration across phases, scales, and decision

Decision-Support and Visualization Layer Interoperability, Security, and
#5(ag Interface overlays analytics N Governance Layer
- 7y Standardized data
- protocols and ontologies
Al/ML Analytics Layer

A

Process historical and live data to
extract predictive and prescriptive

4

Live Mirror Layer

Q Q Transforms static BIM models into

adaptive, continuously updated

3
’w Digital Foundation Layer
1

A

High fidelity BIM representation of
built environment

Figure 2. Conceptual Framework: AI-BIM-Digital Twins for WUI Wildfire Resilience.
contexts (Sun & Turkan, 2020).

Digital Foundation Layer: At its foundation, the framework is anchored in a high-fidelity BIM
representation of the built environment, capturing spatial layout, structural details, material properties,
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defensible space configurations, and patterns of occupancy across WUl communities. This foundation
provides a means of cataloguing vulnerabilities, thereby serving as a reference point for integrating
dynamic data streams. BIM objects should be encoded using open schemas and enriched with fire-
relevant attributes such as material fire ratings and defensible space buffers to enable downstream Al
and digital-twin services (Al-Bashiti et al., 2024; Sun & Turkan, 2020). While BIM has demonstrated value
for evacuation and safety analysis at the building scale, its application to community-scale WUI risk
remains limited unless paired with geospatial layers (Heeren, Dennison, Campbell, & Thompson, 2023;
J. Wang, Wei, & Dong, 2021).

Live Mirror Layer: Extending from this foundation, the digital twin environment transforms static BIM
models into adaptive, continuously updated systems. By ingesting real-time data from weather stations,
remote sensing platforms, sensor networks, and loT devices, the digital twin functions as a dynamic
mirror of evolving wildfire conditions. Emerging municipal-scale twins demonstrate integration of
smoke dispersion physics with city geometries and live data streams, but also highlight cybersecurity
concerns that must be engineered from the outset (Lewis et al., 2024). loT-integrated twins can operate
as real-time risk classifiers, routing sensor events such as heat, smoke, and wind conditions to
predictive services for rapid warnings (NA et al., 2025). For pre-deployment testing and firefighter
training, Augmented reality /Virtual reality-enabled twin sandboxes incorporating mixed reality UAVs
offer safe rehearsal of procedures without field exposure (Costa et al., 2025).

AI/ML Analytics Layer: Al serves as the analytical engine of the framework, processing both historical
and live data to generate predictive and prescriptive insights. Machine-learning models estimate
ignition probabilities, forecast fire propagation trajectories, and assess ember transport risks, while
reinforcement learning techniques support dynamic evacuation planning. Examples include GNN-
LSTM forecasts of Fire Weather Index (Shahriar et al., 2025), CNN-based spread models (Jiang et al.,
2023), interpretable hybrid predictors for large fires (Li et al., 2024), ensemble ignition mapping (Tong &
Gernay, 2023), and ember hotspot detection for roof geometries (Al-Bashiti et al., 2024). A “sense-
predict-decide-act” loop connects crowd-sensed geolocation systems with digital-twin resident
forecasts and evacuation routing agents, enabling time-aware course-of-action recommendations (Fu
et al., 2024; Sharma et al., 2020). Uncertainty quantification and explainability techniques should be
embedded to support stakeholder trust and calibration (Qiu, Chen, Fan, Sun, & Zheng, 2022).

Decision-Support and Visualization Layer: Avisualization and decision-support interface overlays the
analytics, transforming multi-source data into actionable knowledge. Interactive dashboards,
immersive 3D visualizations, and geospatial risk maps make the system accessible to emergency
managers, urban planners, and community residents alike, ensuring translation of technical outputs
into practical decision-making. Field-validated tools in use include crowd-sensed wildfire geolocation,
UAV-assisted firefighter activity recognition, and post-event damage classifiers that can feed directly
into digital twins for surge assessments (Fu et al., 2024; J. Wang et al., 2021). Augmented reality-
integrated interfaces can overlay sensor feeds and tactical overlays for UAV-based prevention and patrol
operations (Costa et al., 2025).

Interoperability, Security, and Governance Layer: The outermost layer emphasizes interoperability
and governance. Standardized data protocols and ontologies are essential to connect BIM, GIS, sensor
networks, and Al models into a unified architecture. Operational studies highlight cyber-risks in 3D twins
and connectivity constraints in crowdsensing systems, making security-by-design and offline-first
fallbacks essential (Fu et al., 2024; Lewis et al., 2024). Continuous learning pipelines should be
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embedded, linking model retraining and MLOps workflows to post-event assessments (e.g., UAV-
satellite burn-severity mapping and infrastructure recovery trajectories), ensuring that the twin evolves
over time (Schmidt, Ellsworth, Tilt, Thiel, & Hiner, 2025). Governance mechanisms must institutionalize
human factors, including community needs and vulnerabilities, evacuation behavior, warning response,
and shelter utilization, to reduce gaps between modelled scenarios and real-world WUI response (Ma
& Lee, 2024; X. Zhang, Zhao, Xu, Nilsson, & Lovreglio, 2024).

4 Discussion

This review demonstrates that the integration of Al, BIM, and digital twins for wildfire resilience in WUI
communities remains highly fragmented, with a strong skew toward hazard modelling and a relative
neglect of evacuation and recovery phases. This imbalance mirrors trends in the broader wildfire
science literature, which historically emphasized fire behavior prediction and suppression
effectiveness, often at the expense of long-term adaptation and post-disaster recovery (Moritz et al.,
2014; Syphard et al., 2007). While predictive models, particularly machine-learning approaches, have
delivered important advances in wildfire forecasting (Reichstein et al., 2019), their reliance on historical
datasets presents a significant limitation. As climate change reshapes ignition patterns, fuel structures,
and fire regimes, models that cannot accommodate non-stationarity risk and emerging trends
becoming increasingly unreliable (Abatzoglou et al., 2021).

The relative absence of BIM and digital twins in the reviewed studies is striking. BIM has been widely
adopted in construction and facility management for safety and hazard assessment (Succar & Kassem,
2015), yet its application to wildfire resilience remains nascent. Only a few studies applied BIM for
evacuation modelling or structural performance assessment (Sun & Turkan, 2020; F. Wang et al., 2021).
Even fewer extended these models into dynamic digital twin environments, despite growing evidence
that real-time, data-driven twins can significantly enhance disaster preparedness and situational
awareness (Fuller et al., 2020). The lack of coupling between regional fire dynamics and building-level
intelligence reflects a missed opportunity for multi-scale risk management, where hazard forecasts
could directly inform structural adaptations and occupant decision-making. Sensor-based monitoring
studies, using UAVs, lol devices, and satellite platforms, represent another promising but
underdeveloped pathway. Work such as FireLoc (Fu et al., 2024) and smoke-detection systems (Govil
etal., 2020) illustrate the feasibility of near-real-time detection, but mostimplementations remain pilots
or conceptual frameworks. Operational maturity is hindered by computational costs, data
heterogeneity, and lack of interoperability standards, challenges that align with broader critiques in the
smart city and digital twin literature (Kitchin, Young, & Dawkins, 2021). Without standardized ontologies
and integration protocols, BIM, GIS, Al, and loT remain siloed systems, undermining the vision of an
interoperable resilience infrastructure. Social and institutional considerations were markedly
underrepresented across the reviewed literature. Very few studies explicitly addressed governance,
community trust, or equity dimensions, despite evidence that social vulnerability is a critical
determinant of wildfire risk in WUl communities (Radeloff et al., 2018). The reliance on technical
solutions without embedding them in socio-technical systems risks producing innovations that fail to
translate into meaningful, actionable, and sustained resilience outcomes. Prior disaster informatics
research underscores that decision-support systems must align with user needs, organizational
capacity, and governance frameworks to achieve adoption (Comes, Mayag, & Negre, 2014).

These findings indicate that while technical progress is being made in wildfire prediction, monitoring,
and evacuation simulation, integration across scales, phases, and socio-technical domains remains
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the central challenge. The conceptual framework directly responds to this gap by outlining a layered,
interoperable architecture that bridges BIM-based structural representations with live data streams and
Al-driven analytics. The proposed “sense—predict-decide—act” loop aligns with calls for adaptive, data-
driven resilience strategies that extend beyond suppression to encompass preparedness, evacuation,
and recovery (Tierney, 2020).

5 Conclusions

This systematic review reveals an uneven landscape of innovation in applying Al, BIM, and digital twins
to wildfire resilience in WUI communities. The overwhelming focus on predictive hazard modelling
reflects the field’s historical roots but leaves major gaps in evacuation, recovery, and structural
vulnerability assessment. While promising advances in machine learning, UAV-enabled sensing, and
BIM-based evacuation modelling exist, their integration into dynamic, interoperable digital twin systems
remains limited. The conceptual framework developed in this paper offers a pathway toward closing
these gaps. By layering BIM-based representations, real-time data ingestion, Al analytics, visualization,
and governance, the framework envisions an end-to-end system that supports proactive wildfire
preparedness, adaptive emergency response, and long-term community resilience. Such integration
could transform WUI fire management from reactive suppression to a continuous cycle of sensing,
prediction, decision-making, and adaptation.

Nevertheless, several limitations remain. First, the maturity of Al-enabled BIM-digital twin systems is
still low, with most studies limited to prototypes or simulations. Second, socio-technical dimensions,
such as community trust, institutional capacity, and policy frameworks, are insufficiently addressed.
Third, interoperability standards for linking BIM, GIS, loT, and Al systems are still emerging, constraining
scalability. Future research should therefore prioritize three directions: (1) operationalizing integrated
Al-BIM-digital twin systems in real-world WUI testbeds, (2) embedding socio-technical perspectives to
ensure adoption and equity, and (3) advancing open standards for data interoperability and model
governance. By addressing these priorities, researchers and practitioners could accelerate the
deployment of intelligent, adaptive digital infrastructures that safeguard vulnerable WUl communities
from escalating wildfire risks.
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