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Communities within the wildland–urban interface (WUI) are increasingly exposed to severe 
and frequent wildfire threats driven by climate change, land-use change, and expanding 
urban development. Traditional fire management approaches have proven inadequate to 
address the complex interactions of fire behavior, human exposure, and infrastructure 
vulnerability. Emerging digital technologies, particularly Building Information Modeling (BIM) 
and digital twins, offer opportunities to enhance WUI resilience by enabling data-rich, 
predictive, and adaptive strategies for preparedness and response. This review synthesizes 
research on integrating BIM, digital twins, and artificial intelligence (AI) to support wildfire 
modeling, risk assessment, situational awareness, and recovery. A systematic review of 71 
peer-reviewed studies revealed a geographically diverse but uneven landscape, concentrated 
in North America. Most studies addressed mitigation, with limited attention to 
evacuation/response or recovery. Four thematic applications emerged: predictive wildfire 
modelling, sensor-based environmental monitoring, structural vulnerability assessment, and 
evacuation planning. Predictive modelling dominated, while BIM and digital twin applications 
remained sparse and poorly integrated. Key enablers included advances in AI/ML algorithms, 
cloud/edge computing, and visualization platforms. Persistent barriers involved 
interoperability gaps, computational demands, dependence on historical datasets, and 
limited attention to governance, equity, and trust. In response, this study proposes a layered 
conceptual framework positioning BIM as a digital foundation, digital twins as adaptive 
mirrors, AI/ML as predictive engines, and visualization interfaces as decision-support tools, 
embedded within interoperability, security, and governance mechanisms. These insights 
provide pathways for advancing digital transformation to strengthen the safety, adaptability, 
and sustainability of WUI communities facing escalating wildfire risks.  

 

 

 

 

 
Keywords:  Wildland–Urban Interface; Building Information Modeling; Digital twins; 
Artificial intelligence; Data-driven risk management. 

 Highlights  
• AI leads wildfire resilience research, but BIM and digital twin integration is limited. 
• Most studies focus on prediction, with recovery and adaptation largely overlooked.  
• Interoperability and governance are key to effective wildfire digital twin systems in WUI. 
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1 Introduction  
Communities located within the wildland–urban interface (WUI) are increasingly exposed to severe and 
frequent wildfire events, driven by the combined effects of climate change, urban expansion, and land-
use transformations (Radeloff et al., 2018). These fire-prone zones, where natural vegetation 
intermingles with human development, present highly complex fire behavior patterns, putting lives, 
critical infrastructure, and ecological systems at elevated risk. Traditional approaches to wildfire 
prevention and response, centered on suppression and hazard mitigation, have proven inadequate in 
the face of rapidly evolving climate conditions and intensified WUI development pressures (Moritz et 
al., 2014). As catastrophic fire events in California, Australia, and southern Europe demonstrate, the 
limitations of conventional strategies demand new, adaptive approaches. 

Advances in digital technologies offer a potential paradigm shift for addressing wildfire threats in WUI 
communities. Building Information Modeling (BIM), originally developed to improve collaboration and 
information flow across the design and construction lifecycle, provides rich digital representations of 
the built environment that can be extended for resilience applications (Succar & Kassem, 2015). Digital 
twins expand upon BIM by dynamically connecting these models to real-time data streams from 
sensors, IoT devices, and remote sensing platforms, thereby enabling continuous monitoring, 
prediction, and adaptive management of both individual structures and community systems (Fuller, 
Fan, Day, & Barlow, 2020). Artificial intelligence (AI) techniques, including machine learning, computer 
vision, and natural language processing, further enhance this potential by delivering predictive 
analytics, pattern recognition, and scenario-based reasoning to support timely and effective wildfire 
risk decision-making (Reichstein et al., 2019). 

Despite these opportunities, the integration of AI, BIM, and digital twins for wildfire resilience in WUI 
communities remains fragmented and underdeveloped. Current research is dispersed across domains 
such as forestry, civil engineering, and computer science, with limited synthesis of their combined 
potential, current progress, and implementation challenges. There is a pressing need to examine how 
these technologies can converge to improve wildfire preparedness, emergency response, and post-
event recovery within vulnerable WUI communities. To address this gap, this paper is guided by three 
research questions: 

• RQ1: How have BIM, digital twins, and AI been applied individually or in combination to support 
wildfire resilience in WUI contexts? 

• RQ2: What barriers and enablers affect the integration of BIM, digital twins, and AI into wildfire 
preparedness, response, and recovery? 

• RQ3: What conceptual framework or pathway can advance the deployment of AI-enabled digital 
twins in BIM for proactive, adaptive WUI fire management? 

The contributions of this review are threefold. First, it synthesizes the fragmented body of knowledge on 
BIM, digital twins, and AI applications for wildfire resilience, bridging insights across disciplines. 
Second, it identifies key technical enablers and barriers, including interoperability challenges, real-time 
integration constraints, and the lack of standardized protocols for linking AI models with BIM-based 
systems. Third, it develops a conceptual framework to guide future research and practice, offering 
directions for how these technologies can transform WUI communities into data-driven, adaptive, and 
fire-resilient systems. 
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2 Methodology  
This study employed a systematic literature review to investigate the intersection of AI, BIM, and digital 
twin technologies in the context of wildfire resilience, particularly within WUI communities. The review 
design was explicitly structured to address the research questions introduced in Section 1. 

2.1 Review Protocol 

The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009). A PRISMA flow diagram was 
constructed to ensure transparency in documenting the identification, screening, eligibility, and 
inclusion stages of the review process (Figure 1). The review was structured around five distinct phases 
of fire management: prevention, mitigation, preparedness, response (suppression), and recovery 
(learning and adaptation). This phase-based framework, informed by Arango, Nogal, Sousa, Matos, and 
Stewart (2024), was used solely for categorization during analysis. The protocol also emphasized 
interdisciplinary coverage by including studies from fire science, civil engineering, computer science, 

and urban planning. 

2.2 Data Sources and Search Strategy 

The literature search was conducted across multiple academic databases, including Scopus, Web of 
Science and IEEE Xplore, supplemented by Google Scholar for cross-validation of gray and emerging 
literature. The search terms were carefully constructed to reflect the intersection of wildfire resilience 
and emerging technologies. Boolean operators and wildcard variations were used to expand coverage. 
The search string was: ("wildfire" OR "wildland–urban interface" OR "WUI") AND ("resilien" OR "fire 
management") AND ("building information modeling" OR "BIM") AND ("digital twin*" OR "virtual 
model*") AND ("artificial intelligence" OR "machine learning" OR "deep learning"). The scope of the 
search spanned from 2010 to 2024, a period marked by the rapid evolution of digital twin technologies 
and the widespread adoption of AI in environmental modeling. Only peer-reviewed journal articles, 
conference proceedings, and high-quality technical reports published in English were retained to 
ensure the rigor and comparability of evidence. 

2.3 Inclusion and Exclusion Criteria 
Studies were included if they addressed: (a) the use of BIM or digital twins for wildfire or WUI resilience; 
(b) applications of AI to wildfire risk management; (c) integration of infrastructure modeling with fire 
behavior prediction; or (d) frameworks or prototypes relevant to proactive wildfire management. Unlike 
many prior reviews that focused exclusively on fire ecology or computational fire science, this review 
required explicit attention to the built environment and the socio-technical dimensions of fire resilience. 

Identification 
Records identified in 

databases and Google 
Scholar (n = 317) 

Screening 
(Titles and abstracts) 

Records screened  
(n = 227) 

Eligibility 
(Full text) Full text 
articles assessed 

(n = 88) 

Included 
Studies included in 

qualitative synthesis  
(n = 71) 

 
Phased based framework 

(Categorization only) 
• Prevention • Mitigation • Preparedness • Response (suppression) • Recovery 

• Interdisciplinary scope: fire science, civil engineering, computer science, urban planning 

Figure 1. PRISMA Flow Diagram — Systematic review of AI, BIM, and Digital Twin for Wildfire/WUI Resilience. 
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Studies were excluded if they considered wildfire ecology in isolation, presented AI algorithms without 
hazard application, or examined BIM solely in non-risk management contexts. 
2.4 Screening and Selection 

The initial search yielded 315 publications. After removing duplicates and conducting a screening of 
titles and abstracts, 88 articles were selected for full-text review. Of these, 71 were retained for analysis 
after meeting all inclusion criteria. Each article was coded for bibliographic details, research objectives, 
methods, technologies used, level of integration, resilience phase addressed, data types used, and 
study limitations. 

2.5 Data Analysis and Synthesis 

The selected studies were analyzed using thematic analysis (Braun & Clarke, 2006). Coding employed 
a combined inductive–deductive approach: deductive codes were derived from the research questions 
and the phase-based framework to ensure alignment with the study aims, while inductive coding 
allowed themes to emerge organically from the data. Codes were grouped into higher-order categories 
aligned with the research questions mentioned in Section 1.   

3 Results 
The systematic review identified 71 peer-reviewed studies that met the inclusion criteria. These studies 
collectively span multiple countries, with the majority concentrated in North America, followed by 
Australia, Canada, Spain, Chile, and parts of Asia. They represent a diverse range of technological 
applications, geographical contexts, and resilience phases, offering a rich but uneven landscape of 
innovation at the intersection of AI, BIM, and digital twin technologies for wildfire resilience in WUI 
communities. The phase distribution was highly skewed: 60 studies (≈85%) addressed mitigation, six 
focused on reactiveness (evacuation and response), and only five targeted recovery (post-fire 
assessment and adaptation). In line with the research questions in Section 1, the results are organized 
into the following sections. 

3.1 Applications of AI, BIM, and Digital Twins for Wildfire Resilience 

To address RQ 1, the review examined current applications across resilience phases. Four thematic 
areas emerged: predictive wildfire modelling (prevention/mitigation), sensor-based environmental 
monitoring (detection), structural vulnerability assessment (preparedness), and evacuation planning 
(response). 

3.1.1 Predictive Wildfire Modelling 

Predictive modelling was the dominant theme, with 51 studies (≈72%) focused on fire spreading and its 
impact on built environments. These studies employed a variety of AI enablers, such as convolutional 
neural networks (CNNs), ensemble learning, and graph neural networks (GNNs), to forecast wildfire 
spread, ignition probability, and severity. Machine learning (ML) was the most prevalent technology 
category (33 ML-only studies), followed by ML+GIS integrations (22 studies), while only a handful 
incorporated digital twins (5) or BIM (2). For instance, Shahriar, Choi, and Islam (2025) developed a 
hybrid GNN-LSTM framework to forecast the Fire Weather Index across CONUS, achieving high spatial 
accuracy but at significant computational cost. Similarly, Gu, Csiszar, Tsidulko, and Guo (2025) used 
satellite data and machine learning to estimate fire radiative power, enhancing understanding of fire 
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intensity. Other notable approaches include ensemble-based ignition prediction (Tong & Gernay, 2023), 
hybrid ML for large-fire projection (Li et al., 2024), and deep learning for ember hotspot prediction on 
gable roofs (Al-Bashiti, Nguyen, Naser, & Kaye, 2024). However, most models relied heavily on historical 
data, which introduces limitations when fire behavior shifts due to climate change or land-use 
alterations. Integration with BIM was minimal. Only two studies (Sun & Turkan, 2020; F. Wang, Xu, Chen, 
Nzige, & Chong, 2021) explored BIM for fire safety or evacuation modelling, and none linked regional 
hazard forecasts to building-level digital twins. This disconnect highlights a missed opportunity to 
translate regional fire dynamics into structure-level risk intelligence. 

3.1.2 Sensor-Based Environmental Monitoring 

Approximately six studies (≈9% of the corpus) explored the use of sensor networks, including 
Unmanned Aerial Vehicles (UAVs), Internet of Things (IoT) devices, and satellite platforms, for real-time 
environmental data collection. For example, Fu, Hu, Sutrave, Beerel, and Raghavan (2024) developed 
FireLoc, a crowdsensing system that combines ground cameras and landscape data to geolocate 
wildfires with low latency. Similarly, Govil, Welch, Ball, and Pennypacker (2020) demonstrated a deep 
learning-based smoke detection system using remote camera images, capable of identifying fires within 
15 minutes of ignition. UAV-integrated AI systems for firefighter action recognition (H. Wang et al., 2025) 
and multi-UAV coverage optimization (Diaz-Vilor, Lozano, & Jafarkhani, 2025) illustrate operational 
monitoring advances. Some studies proposed digital twin frameworks that could ingest these sensor 
data streams to simulate fire behavior dynamically. Lewis et al. (2024) developed a Fire and Smoke 
Digital Twin, integrating air quality, weather, and infrastructure data, while NA, Rajasekar, and 
Sarvehswaran (2025) combined IoT sensors with a deep CNN in a real-time twin-enabled risk 
classification system. Despite these advances, most implementations remained at the conceptual or 
pilot scale, falling short of operational maturity. 

3.1.3 Structural Vulnerability Assessment 

BIM-cantered studies primarily focused on simulating material performance and structural detailing 
under fire exposure. Sun and Turkan (2020) developed a BIM-based simulation framework to assess 
evacuation safety in buildings, while Al-Bashiti et al. (2024) used deep learning to identify ember 
hotspots on rooftops. Despite BIM’s potential for detailed representation, no study demonstrated 
dynamic feedback loops between fire progression and structural response within a digital twin 
environment. This reveals a critical integration gap: while BIM offers detailed representations of the built 
environment, its potential for adaptive risk modelling remains largely untapped. 

3.1.4 Evacuation Planning 

Evacuation modelling was addressed in eight studies (11% of the corpus), using agent-based 
simulations, reinforcement learning, and predictive analytics. Ma and Lee (2024) developed machine 
learning models to predict evacuee behavior based on survey data, while Sharma, Andersen, Granmo, 
and Goodwin (2020) applied Deep Q-Learning to optimize evacuation strategies in simulated 
environments. BIM-enhanced evacuation simulations were explored by F. Wang et al. (2021), who 
modelled stair and elevator strategies in a college canteen, and Sun and Turkan (2020), who validated a 
BIM-based evacuation framework using the Station nightclub fire case. However, real-time digital twin 
applications for evacuation remain absent. Most models were static or scenario-based, lacking 
adaptability to evolving fire conditions or incoming sensor data. 
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3.2 Enablers and Barriers in AI–BIM–Digital Twin Integration 

To address RQ2, the review identified both enabling technologies that support integration and barriers 
that constrain their effective deployment. Several enabling technologies emerged across the literature. 
These include cloud and edge computing for data processing, algorithms (e.g., GNN-LSTM, ULSTM, and 
hybrid deep learning), and visualization platforms for geospatial overlays and interactive decision 
support. For instance, C. Zhang, Cheng, Kasoar, and Arcucci (2022) combined reduced-order modelling 
with LSTM and data assimilation to improve real-time wildfire forecasting. Augmented reality was 
explored for UAV-based fire prevention (Costa et al., 2025), while YOLO-DeepSORT frameworks were 
integrated into digital twins for real-time occupant tracking (Ding, Zhang, & Huang, 2023).  Despite 
promising developments, recurring challenges were evident. Foremost was the lack of standardized 
interoperability protocols, which constrained meaningful integration of BIM and real-time sensor data 
into cohesive digital twin environments. Technical bottlenecks included (i) computational intensity of 
high-resolution ML and digital twin models, (ii) dependence on historical datasets that may not reflect 
future fire dynamics, and (iii) cybersecurity vulnerabilities in digital twin deployments (Lewis et al., 2024; 
NA et al., 2025). Social and institutional dimensions were also underexplored. Only a handful of studies 
acknowledged governance, equity, or community trust issues, despite their critical role in WUI 
resilience.  

3.3 Conceptual Framework 

Building upon the thematic synthesis of the literature and in response to RQ3, this study advances a 
conceptual framework (Figure 2) to guide the integration of AI, BIM, and digital twins in enhancing 
wildfire resilience within WUI communities. The framework envisions a layered and interoperable 
system that continuously monitors, predicts, and responds to wildfire hazards while simultaneously 
supporting long-term community adaptation. The framework is motivated by evidence that most 
existing work concentrates on hazard modelling at regional scales, with limited coupling of BIM and 
digital twins, highlighting the need for end-to-end integration across phases, scales, and decision 

contexts (Sun & Turkan, 2020). 

Digital Foundation Layer: At its foundation, the framework is anchored in a high-fidelity BIM 
representation of the built environment, capturing spatial layout, structural details, material properties, 

       Decision-Support and Visualization Layer Interoperability, Security, and 
Governance Layer 

AI/ML Analytics Layer 

Live Mirror Layer 

Digital Foundation Layer 

Standardized data 
protocols and ontologies 

Interface overlays analytics 
knowledge 

Process historical and live data to 
extract predictive and prescriptive 

insights 

Transforms static BIM models into 
adaptive, continuously updated 

High fidelity BIM representation of  
built environment 

Figure 2. Conceptual Framework: AI–BIM–Digital Twins for WUI Wildfire Resilience. 
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defensible space configurations, and patterns of occupancy across WUI communities. This foundation 
provides a means of cataloguing vulnerabilities, thereby serving as a reference point for integrating 
dynamic data streams. BIM objects should be encoded using open schemas and enriched with fire-
relevant attributes such as material fire ratings and defensible space buffers to enable downstream AI 
and digital-twin services (Al-Bashiti et al., 2024; Sun & Turkan, 2020). While BIM has demonstrated value 
for evacuation and safety analysis at the building scale, its application to community-scale WUI risk 
remains limited unless paired with geospatial layers (Heeren, Dennison, Campbell, & Thompson, 2023; 
J. Wang, Wei, & Dong, 2021). 

Live Mirror Layer: Extending from this foundation, the digital twin environment transforms static BIM 
models into adaptive, continuously updated systems. By ingesting real-time data from weather stations, 
remote sensing platforms, sensor networks, and IoT devices, the digital twin functions as a dynamic 
mirror of evolving wildfire conditions. Emerging municipal-scale twins demonstrate integration of 
smoke dispersion physics with city geometries and live data streams, but also highlight cybersecurity 
concerns that must be engineered from the outset (Lewis et al., 2024). IoT-integrated twins can operate 
as real-time risk classifiers, routing sensor events such as heat, smoke, and wind conditions to 
predictive services for rapid warnings (NA et al., 2025). For pre-deployment testing and firefighter 
training, Augmented reality /Virtual reality-enabled twin sandboxes incorporating mixed reality UAVs 
offer safe rehearsal of procedures without field exposure (Costa et al., 2025). 

AI/ML Analytics Layer: AI serves as the analytical engine of the framework, processing both historical 
and live data to generate predictive and prescriptive insights. Machine-learning models estimate 
ignition probabilities, forecast fire propagation trajectories, and assess ember transport risks, while 
reinforcement learning techniques support dynamic evacuation planning. Examples include GNN-
LSTM forecasts of Fire Weather Index (Shahriar et al., 2025), CNN-based spread models (Jiang et al., 
2023), interpretable hybrid predictors for large fires (Li et al., 2024), ensemble ignition mapping (Tong & 
Gernay, 2023), and ember hotspot detection for roof geometries (Al-Bashiti et al., 2024). A “sense–
predict–decide–act” loop connects crowd-sensed geolocation systems with digital-twin resident 
forecasts and evacuation routing agents, enabling time-aware course-of-action recommendations (Fu 
et al., 2024; Sharma et al., 2020). Uncertainty quantification and explainability techniques should be 
embedded to support stakeholder trust and calibration (Qiu, Chen, Fan, Sun, & Zheng, 2022).  

Decision-Support and Visualization Layer: A visualization and decision-support interface overlays the 
analytics, transforming multi-source data into actionable knowledge. Interactive dashboards, 
immersive 3D visualizations, and geospatial risk maps make the system accessible to emergency 
managers, urban planners, and community residents alike, ensuring translation of technical outputs 
into practical decision-making. Field-validated tools in use include crowd-sensed wildfire geolocation, 
UAV-assisted firefighter activity recognition, and post-event damage classifiers that can feed directly 
into digital twins for surge assessments (Fu et al., 2024; J. Wang et al., 2021).  Augmented reality-
integrated interfaces can overlay sensor feeds and tactical overlays for UAV-based prevention and patrol 
operations (Costa et al., 2025). 

Interoperability, Security, and Governance Layer: The outermost layer emphasizes interoperability 
and governance. Standardized data protocols and ontologies are essential to connect BIM, GIS, sensor 
networks, and AI models into a unified architecture. Operational studies highlight cyber-risks in 3D twins 
and connectivity constraints in crowdsensing systems, making security-by-design and offline-first 
fallbacks essential (Fu et al., 2024; Lewis et al., 2024). Continuous learning pipelines should be 
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embedded, linking model retraining and MLOps workflows to post-event assessments (e.g., UAV-
satellite burn-severity mapping and infrastructure recovery trajectories), ensuring that the twin evolves 
over time (Schmidt, Ellsworth, Tilt, Thiel, & Hiner, 2025). Governance mechanisms must institutionalize 
human factors, including community needs and vulnerabilities, evacuation behavior, warning response, 
and shelter utilization, to reduce gaps between modelled scenarios and real-world WUI response (Ma 
& Lee, 2024; X. Zhang, Zhao, Xu, Nilsson, & Lovreglio, 2024). 

4 Discussion  
This review demonstrates that the integration of AI, BIM, and digital twins for wildfire resilience in WUI 
communities remains highly fragmented, with a strong skew toward hazard modelling and a relative 
neglect of evacuation and recovery phases. This imbalance mirrors trends in the broader wildfire 
science literature, which historically emphasized fire behavior prediction and suppression 
effectiveness, often at the expense of long-term adaptation and post-disaster recovery (Moritz et al., 
2014; Syphard et al., 2007). While predictive models, particularly machine-learning approaches, have 
delivered important advances in wildfire forecasting (Reichstein et al., 2019), their reliance on historical 
datasets presents a significant limitation. As climate change reshapes ignition patterns, fuel structures, 
and fire regimes, models that cannot accommodate non-stationarity risk and emerging trends 
becoming increasingly unreliable (Abatzoglou et al., 2021). 

The relative absence of BIM and digital twins in the reviewed studies is striking. BIM has been widely 
adopted in construction and facility management for safety and hazard assessment (Succar & Kassem, 
2015), yet its application to wildfire resilience remains nascent. Only a few studies applied BIM for 
evacuation modelling or structural performance assessment (Sun & Turkan, 2020; F. Wang et al., 2021). 
Even fewer extended these models into dynamic digital twin environments, despite growing evidence 
that real-time, data-driven twins can significantly enhance disaster preparedness and situational 
awareness (Fuller et al., 2020). The lack of coupling between regional fire dynamics and building-level 
intelligence reflects a missed opportunity for multi-scale risk management, where hazard forecasts 
could directly inform structural adaptations and occupant decision-making. Sensor-based monitoring 
studies, using UAVs, IoT devices, and satellite platforms, represent another promising but 
underdeveloped pathway. Work such as FireLoc (Fu et al., 2024) and smoke-detection systems (Govil 
et al., 2020) illustrate the feasibility of near-real-time detection, but most implementations remain pilots 
or conceptual frameworks. Operational maturity is hindered by computational costs, data 
heterogeneity, and lack of interoperability standards, challenges that align with broader critiques in the 
smart city and digital twin literature (Kitchin, Young, & Dawkins, 2021). Without standardized ontologies 
and integration protocols, BIM, GIS, AI, and IoT remain siloed systems, undermining the vision of an 
interoperable resilience infrastructure. Social and institutional considerations were markedly 
underrepresented across the reviewed literature. Very few studies explicitly addressed governance, 
community trust, or equity dimensions, despite evidence that social vulnerability is a critical 
determinant of wildfire risk in WUI communities (Radeloff et al., 2018). The reliance on technical 
solutions without embedding them in socio-technical systems risks producing innovations that fail to 
translate into meaningful, actionable, and sustained resilience outcomes. Prior disaster informatics 
research underscores that decision-support systems must align with user needs, organizational 
capacity, and governance frameworks to achieve adoption (Comes, Mayag, & Negre, 2014). 

These findings indicate that while technical progress is being made in wildfire prediction, monitoring, 
and evacuation simulation, integration across scales, phases, and socio-technical domains remains 
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the central challenge. The conceptual framework directly responds to this gap by outlining a layered, 
interoperable architecture that bridges BIM-based structural representations with live data streams and 
AI-driven analytics. The proposed “sense–predict–decide–act” loop aligns with calls for adaptive, data-
driven resilience strategies that extend beyond suppression to encompass preparedness, evacuation, 
and recovery (Tierney, 2020). 

5 Conclusions  
This systematic review reveals an uneven landscape of innovation in applying AI, BIM, and digital twins 
to wildfire resilience in WUI communities. The overwhelming focus on predictive hazard modelling 
reflects the field’s historical roots but leaves major gaps in evacuation, recovery, and structural 
vulnerability assessment. While promising advances in machine learning, UAV-enabled sensing, and 
BIM-based evacuation modelling exist, their integration into dynamic, interoperable digital twin systems 
remains limited. The conceptual framework developed in this paper offers a pathway toward closing 
these gaps. By layering BIM-based representations, real-time data ingestion, AI analytics, visualization, 
and governance, the framework envisions an end-to-end system that supports proactive wildfire 
preparedness, adaptive emergency response, and long-term community resilience. Such integration 
could transform WUI fire management from reactive suppression to a continuous cycle of sensing, 
prediction, decision-making, and adaptation. 

Nevertheless, several limitations remain. First, the maturity of AI-enabled BIM–digital twin systems is 
still low, with most studies limited to prototypes or simulations. Second, socio-technical dimensions, 
such as community trust, institutional capacity, and policy frameworks, are insufficiently addressed. 
Third, interoperability standards for linking BIM, GIS, IoT, and AI systems are still emerging, constraining 
scalability. Future research should therefore prioritize three directions: (1) operationalizing integrated 
AI–BIM–digital twin systems in real-world WUI testbeds, (2) embedding socio-technical perspectives to 
ensure adoption and equity, and (3) advancing open standards for data interoperability and model 
governance. By addressing these priorities, researchers and practitioners could accelerate the 
deployment of intelligent, adaptive digital infrastructures that safeguard vulnerable WUI communities 
from escalating wildfire risks. 
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