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Urban water bodies mitigate near-surface heat through evaporation and thermal storage, yet 
their performance is under-validated in hot–humid settings. This study evaluates 
Computational Fluid Dynamic software (CFD) for simulating lake-induced cooling on the 
National Taiwan University campus (Taipei) and quantifies the trade-off between grid 
resolution, accuracy, and computational cost. We first performed a grid-size verification 
using 3, 6, and 9 m cells for scenario with and without Drunken Moon Lake, analysing grid 
size effect on air temperature (AT), relative humidity (RH), specific humidity (SH), wind 
speed (WS), wind direction (WD), and mean radiant temperature (MRT). We then applied the 
optimal resolution to validate simulations against four field measurements at two sites, 
using time-series and scatter analyses. Grid verification showed consistent lake cooling in 
AT and MRT across all resolutions; RH and SH differences were small, and WS/WD were 
comparatively insensitive to grid size. A 24-hr simulation required 84.5 hr (3 m), 13 hr (6 m), 
and 6.5 hr (9 m), indicating 6 m as a pragmatic resolution that preserves the lake signal 
while reducing runtime by more than 6 times relative to 3 m. Validation result demonstrated 
high agreement for AT, moderate-to-strong performance for RH and SH, and weak, positively 
biased WS with low correlation. The study fills a blue-infrastructure validation gap and 
offers actionable guidance on grid selection for campus and district-scale applications. In 
practice, CFD software use in this research under grid size setting at 6 m supports climate-
sensitive design focused on thermal outcomes; wind-dependent decisions should be 
complemented by other higher-order computational fluid dynamics or targeted monitoring. 
Limitations include short monitoring windows, two validation sites, and generalized 
vegetation–water parameters. Findings from this research can inform resilient design and 
policy for water-based cooling in hot–humid cities. 
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 Highlights  
• CFD software (ENVI-met) captures lake-induced cooling in AT/MRT; RH/SH effects are 

modest; wind-speed skill is weak. 
• Blue-infrastructure cooling validated in a hot–humid campus setting. 
• A 6 m grid preserves the lake signal and reduces runtime by more than 6 times 

compared with 3 m. 
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1 Introduction  

Urban Heat Island (UHI) effects have intensified with climate change and rapid urbanisation(Richa 
Jain, 2022). Dense urban fabrics which characterised by high thermal mass, low albedo, and limited 
evapotranspiration, makes cites absorb and store solar energy, leading to higher air and surface 
temperatures compare to surrounding rural areas(Liu et al., 2024; Tian et al., 2021). These 
temperature elevations are linked to increased energy and water demand in buildings, degraded air 
quality, and reduced outdoor thermal comfort(Tian et al., 2021). 

A wide range of strategies has been proposed to mitigate UHI, including vegetation-based measures 
(e.g., trees, green roofs and façades), water-based interventions (e.g., ponds, lakes, channels), urban 
form and planning approaches (e.g., ventilation corridors, shading from morphology), and material 
solutions (e.g., high-albedo or high-emissivity pavements) (Ren et al., 2023). While the thermal 
benefits of greening are well documented, the magnitude and spatial extent of cooling provided by 
blue infrastructure remain less consistently quantified across climates and urban morphologies(Liu et 
al., 2021). The specific evidence of water body’s effect is therefore needed, to support design 
decisions and policy. This paper investigates whether ENVI-met can reliably in simulate lake-induced 
cooling effect in a hot and humidity campus and what grid resolution balances accuracy and runtime 
for design use. Results include (i) verify resolution sensitivities and (ii) validate simulations result of Air 
Temperature (AT), Relative Humidity (RH), Specific Humidity (SH) and Wind Speed (WS) against four 
different data from site measurement, reporting performance via R², RMSE, and MAPE. 

2 A Review on Computational Fluid Dynamics in Water Cooling Effect  
This section establishes the theoretical and empirical foundation for our study by clarifying core 
concepts and positioning ENVI-met software within the broader Computational Fluid Dynamics (CFD) 
based urban microclimate literature. First, we analysis the difference between the CFD software. Then 
summarize synthesise existing frameworks and evidence on ENVI-met’s performance.   

2.1 Computational Fluid Dynamics   

Computational Fluid Dynamics is widely used to assess urban microclimates since it isolates the 
influence of individual parameters, enables controlled scenario testing, and provides spatially 
continuous fields rather than point measurements (Ampatzidis & Kershaw, 2020; Toparlar et al., 2017). 
In microclimate study there are several popular CFD software, Table 1 compare several widely used 
CFD platforms, highlight their applications, strengths, limitations, and sets in water simulation (Le et 
al., 2024). Alternative CFD approaches, such as ANSYS Flurent or OpenFOAM, offer higher flexibility in 
turbulence modelling but often require greater computational resources and specialized expertise. 
ENVI-met’s balance of usability and specificity has made it the dominant model for microclimate 
research. From previous review of CFD models being used, almost half of the investigated studies 
were based on ENVI-met (Adilkhanova et al., 2022; Pignatta et al., 2018; Toparlar et al., 2017).  ENVI-
met is a three-dimensional, grid-based, non-hydrostatic model that simulates coupled exchanges of 
momentum, heat, and moisture between buildings, vegetation, and the atmosphere, drawing on the 
fundamental laws of fluid dynamics and thermodynamics (Sinsel, 2022). This makes it a powerful tool 
for assessing changes in urban thermal environment, though questions remain about its accuracy in 
underexplored scenarios such as water body cooling effect. 
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Table I. Comparison of common Computational Fluid Dynamic software  

Software Applications Advantages Limitations Water Simulation 

ENVI-met 
Urban microclimate, UHI 
analysis, evaluation of 
green infrastructure 

Designed specifically for urban 
microclimate studies; includes 
eight built-in databases offers a 
convenient starting point; 
suitable for assessing UHI 
mitigation strategies such as 
green roofs and vertical greening 

Default settings are optimized for 
temperate climates; simulations in 
subtropical/tropical contexts require 
localization adjustments; potential 
overestimation of temperature and 
simplified radiation flux calculations 

Treats water as fixed 
surface; models radiation 
and evaporation; simplified 
shallow-water energy 
balance; no free-surface 
hydrodynamics 
capabilities. 

ANSYS-
Fluent 

Microclimate and energy 
balance (e.g., radiation, 
evapotranspiration, 
surface temperature) 

High flexibility; offers multiple 
turbulence models, radiation 
schemes, and mesh 
configurations; capable of high-
accuracy simulations for 
complex energy balance studies 

No dedicated urban database; 
vegetation and soil parameters must 
be manually defined; porous media 
approaches for foliage may 
inadequately represent shading; 
computationally intensive with 
complex setup 

Use Volume of Fluid (VOF) 
for air–water interfaces; 
couples’ species-based 
evaporation with heat 
transfer. 

OpenFOAM 
Urban wind field and wind 
energy analyses 

Open-source software; fully 
customizable code; highly 
flexible for diverse CFD 
problems 

No built-in material or vegetation 
database; requires user-defined 
coding; steep learning curve and high 
development cost 

Uses interFoam VOF to 
track interfaces; optional 
phase-change libraries; 
configurable radiation 
coupling. 

PHOENICS 
Urban wind environment 
analysis 

Fast computation; efficient for 
city-scale wind field 
simulations; provides partial 
building and thermal 
parameters 

Limited databases; weak support for 
ground and vegetation processes; 
requires user-provided 
measurements or parameters 

Offers VOF and Scalar-
Equation free-surface 
schemes; optional 
Continuum Surface Force 

2.2 Past Water Body’s Simulation Result  
Prior simulations of water bodies report consistent, context-dependent cooling. Using CFD, Tominaga 
et al. (2015) validated evaporative cooling from urban water surfaces and found pedestrian-level air 
temperature reductions of about 2 °C, with the cooling plume extending to 100 m downwind in the 
absence of obstructions. Shi et al.(2020) quantified blue–green synergies, showing that a one-unit 
decrease in tree LAI around water was associated with 0.19–0.31 °C lower average air temperature, 
and reporting greater cooling for species with lower LAI in waterfront settings. At campus scale, 
Ampatzidis and Kershaw (2020) simulated around 1 °C cooling attributable to water bodies, whereas 
Liao et al. (2024) observed stronger seasonal asymmetry in a subtropical campus, up to 3.5 °C 
daytime cooling in summer and 3.9 °C daytime warming in winter near water due to radiative–
advective effects. Comparative analyses also indicate air-temperature reductions of 1.6 °C from 
vegetation and 1.1 °C from ponds (Adilkhanova et al., 2022). 

2.3 Knowledge Gaps and Research Opportunities  
Despite extensive use, the past ENVI-met literature is strongly skewed toward greening appear in 70% 
of studies, whereas water bodies are addressed in only 5% (Liu et al., 2021). Moreover, validation 
remains inconsistent, a recent review found that most CFD urban microclimate studies lacked 
observational validation (105 of 183), raising concerns about reliability and transferability (Tominaga et 
al., 2015; Toparlar et al., 2017). These gaps motivate targeted validation of ENVI-met for blue 
infrastructure in subtropical area’s settings and a clearer understanding of resolution accuracy trade-
offs for future decision support. 
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3 Methodology  
In this research, we adopt a four-step framework: (i) field data collection, (ii) model build and grid-size 
verification simulaiton (with grid size: 3m, 6m, 9 m), (iii) validation against four on-site collected data, 
using time-series comparison and R², RMSE and MAPE, (iv) result analysis in outcomes. This structure 
directly addresses the literature’s two central needs: validated evidence for water-body cooling and 
practical guidance on model resolution for district-scale water applications. 

3.1 Field Measurements 

Field data collect were conducted around Drunken Moon Lake at National Taiwan University, central 
Taipei (Figure 1.). Two sites were monitored (Figure 1.ⅲ), Site A (near lakeside) and Site B (open 
grassland). Sensors (Table 2.) were installed at pedestrian height (1.5 m) to capture AT, RH, and WS. 
SH was derived from air temperature, relative humidity, and air pressure (≈1013 hPa). Four days’ site 
measurement were conducted from V1 to V4. Table 3. Shows the detail of each site collect. 

 
(ⅰ) (ⅱ) (ⅲ) 

Figure 1. Study area and measurement setup: (i) ENVI-met simulation model, (ii) site location at National Taiwan University 
with simulation domain and Drunken Moon Lake, and (iii) measurement points A and B around Drunken Moon Lake with 

corresponding field instrumentation. 

Table 2. Measurement variables, technical information of instrument  

Variable  Sensor  Accuracy  Measurement 
Range  

Output resolution  Sampling  

Air temperature (AT) HOBO S-THC-
M002 

±0.25°C (from -40° to 0°C) 
±0.20°C (from 0° to 70°C) 

-40°C to 75°C 0.02°C 5 min 

Relative humidity 
(RH) 

HOBO S-THC-
M002 

±2.5% (from 10% to 90% 
RH) 

0-100%* RH  
at -40° to 75°C 

0.01% RH 5 
min 

Wind speed (WS) HOBO S-WSB-
M003 

± 1.1 m/s or ± 4% of reading 
whichever is greater 

0 to 76 m/s 0.5 m/s 5 min 

Solar radiation HOBO S-LIB-M003 ±10 W/m2 or ±5%, 0 to 1280 W/m2  1.25 W/m2 5 min 
Data logger HOBO H21-USB   -20° to 50°C 1 second to 18 hours   

 

Table 3. Summary of field measurement, including case period, measurement site, and weather conditions. 

Case Time Site  Weather condition 
V1 2024/10/18 00:00 – 2024/10/19 15:00 (39hr) A Sunny 
V2 2024/10/19 16:00 – 2024/10/21 07:00 (39hr) B Sunny, cloudy afternoon 
V3 2025/03/25 00:00 – 2025/03/25 22:00 (22hr) B Sunny 
V4 2025/03/26 00:00 – 2025/03/26 22:00 (22hr) A Sunny  

 

3.2 Simulation Model Build and Weather Input 

CFD simulation model with domain centred on Drunken Moon Lake; 5 times Drunken Moon Lake’s 
radius with 10-grid buffer to limit boundary artefacts were build (Figure 1.ⅰ). Vegetation was explicitly 



 
Shun-Yu Yang1, Ying-Chieh Chan2  
 

Proceedings of Smart and Sustainable Built Environment Conference Series         SASBE2025  239 | 248 
 

represented. 2631 trees were included in domain, of which 1754 were matched to the ENVI-met 
database by morphological similarity (e.g., crown diameter, height, leaf density). The remaining 877 
trees were generalized using “Tree of Heaven” as a representative species. To ensure stable boundary 
conditions, each simulation included a 6-hour spin-up period prior to the validation period. Simulation 
weather input file are shown as Figure 3. 

As Figure 2. Shown, six scenarios combine 3/6/9 m grids with and without lake, outputs from six points 
for AT, RH, SH, WS, WD and MRT, data were compared to quantify parameter sensitivity in gird size 
change, lake signal robustness, and computational cost. 

   

 
 
 
 
 
 
 
 
 
 

 

(ⅰ) 3m lake (ⅲ) 6m lake (ⅴ) 9m lake 

   
(ⅱ) 3m no-lake (ⅳ) 6m no-lake (ⅵ) 9m no-lake 

Figure 2. Spatial distribution of simulated microclimate at Point 1–6 under different grid sizes and water-body settings: (i) 3 m 
lake, (ii) 3 m no-lake, (iii) 6 m lake, (iv) 6 m no-lake, (v) 9 m lake, and (vi) 9 m no-lake. 

  
(a) (b) 

Figure 3. Meteorological conditions during field measurement V1–V4. (a) October 2024 (V1–V2) and (b) March 2025 (V3–V4). 
Panels show, cloud cover and precipitation; 6.3m air temperature with relative humidity; 6.3m wind speed with wind 

direction. 

3.3 Validation Analysis 
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Validation was undertaken by pairing simulated outputs at 1.5m height with co-located field 
observations and assessing agreement through time-series comparisons, error and association 
metrics. We evaluated 4 variables (AT, RH, SH, WS); used a complementary set of indices: Coefficient 
of determination (R²) to quantify association between simulated and observed values (higher is 
better). Root-mean-square error (RMSE) for air temperature (AT) to measure error magnitude, Mean 
absolute percentage error (MAPE) for relative humidity (RH) to express error relative to the observed 
value. The lower values of RMSE and MAPE are indicated of better simulation performance.               

4 Results  
4.1 Grid-Size Verification 

We evaluated three horizontal resolutions (3, 6, and 9 m) with and without the lake, and analysed five 
pairwise contrasts, 3 m (lake – no lake), 6 m (lake – no lake), 9 m (lake – no lake), 6 m (lake) – 3 m (lake), 
and 9 m (lake) – 6 m (lake), across six microclimatic parameters from 6 point’s data. Figure 4. shows 
the spatial distribution of air temperature at 14:00 for the 3, 6, and 9 m grids under lake and no-lake 
conditions. 

   

 
 
 
 
 
 

 

(ⅰ) 3m lake Aire Temperature (ⅲ) 6m lake Aire Temperature (ⅴ) 9m lake Aire Temperature 

   

(ⅱ) 3m no-lake Aire 
Temperature 

(ⅳ) 6m no-lake Aire 
Temperature 

(ⅵ) 9m no-lake Aire 
Temperature 

Figure 4. 1.5m above ground Air Temperature at 14:00 for six scenarios: (i) 3 m lake, (ii) 3 m no lake, (iii) 6 m lake, (iv) 6 m no 
lake, (v) 9 m lake, (vi) 9 m no lake.  

As Figure 5. show grid-size verification across six microclimatic variables. Each panel shows box-and-
whisker summaries for five pairwise comparisons: (a) 3 metre grid with lake minus 3 metre grid without 
lake, (b) 6 metre with lake minus 6 metre without lake, (c) 9 metre with lake minus 9 metre without 
lake, (d) 6 metre with lake minus 3 metre with lake, and (e) 9 metre with lake minus 6 metre with lake. 
Dots indicate values from six reference points; the red line is the median and the blue dot is the mean. 

Results from gird size verification  
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• Air Temperature: lake cooling at all resolutions is similar, mean reductions of 0.14, 0.17, and 
0.19 °C for three, six, and nine metres; cross-grid differences are small, with slightly greater 
variability at finer resolution. 

• Mean Radiant Temperature: consistently lower with the lake (means −0.34 to −0.42 °C, 
medians −0.21 to −0.25 °C); modest cross-grid shift at six minus three metres (mean −0.44 °C) 
and instability at nine minus six metres, including outliers exceeding +6 °C. 

• Relative Humidity: medians near zero in lake versus no-lake comparisons; between lake cases 
the six-metre grid is +0.64% relative to three metres, while nine metres is −0.78% relative to six 
metres. 

• Specific Humidity: small, consistent decreases (−0.16%, −0.20%, −0.21% for three, six, nine 
metres); cross-grid contrasts are minimal (about +0.02% for six minus three metres and 
−0.05% for nine minus six metres). 

• Wind Speed: effects are negligible; lake versus no-lake differences are approximately 0.00 m/s; 
cross-grid offsets are +0.06 and +0.03 m/s for grid six minus three metres and grid nine minus 
six metres. 

• Wind Direction: near-zero means in lake versus no-lake cases (about 0.00° to −0.07°); larger 
variability in cross-grid comparisons, with a median of +0.28° for six minus three metres and 
inconsistent behaviour for nine minus six metres (mean +1.36°, median −0.97°, occasional 
outliers up to ±10°). 

For computational cost part, a twenty-four-hour simulation required 84.5 hours at three metres, 13 
hours at six metres, and 6.5 hours at nine metres. Overall, the six-metre grid offers the most favourable 
balance between simulation results and runtime, preserving the lake-cooling signal observed at three 
metres grid size while reducing computation time by more than sixfold. Resolution influenced 
variables unevenly. AT and MRT were most responsive and most clearly expressed the lake signal; RH 
and SH showed modest responses; WS and WD were largely insensitive apart from directional 
variability in cross-grid comparisons. Balancing accuracy and efficiency, the six-metre grid offers the 
most favourable trade-off. 

  

(ⅰ) Air Temperature Difference (ⅱ) Mean Radiation Temperature difference 

  

(ⅲ) Relative Humidity Difference (ⅳ) Specific Humidity Difference 
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(ⅴ) Wind Speed Difference (ⅵ) Wind Direction Difference 

Figure 5. Grid-size verification for six microclimatic variables: (i) Air Temperature, (ii) Mean Radiant Temperature, (iii) Relative 
Humidity, (iv) Specific Humidity, (v) Wind Speed, (vi) Wind Direction. Each panel reports five pairwise contrasts: a) 3 m lake 

minus 3 m no lake, b) 6 m lake minus 6 m no lake, c) 9 m lake minus 9 m no lake, d) 6 m lake minus 3 m lake, e)9 m lake minus 
6 m lake. Dots represent values from six reference points; the red line is the median and the blue dot the mean. Values in a–c 

indicate effect attributable to the lake, whereas d–e show resolution effects with the lake present. 

4.2 Water Body Simulate Validation 

4.2.1 Time-Series Comparison 

Across the four sites data collect cases, Figure 6. shows the simulations reproduce the diurnal 
evolution of air temperature with small daytime underestimation, while relative humidity follows 
observed timing but shows campaign-dependent bias; specific humidity is generally robust in October 
and weaker in March; and wind speed is consistently overestimated with limited variability. In case V1, 
sunny, Site A, 39 hr. AT matches the diurnal cycle with slight low bias at daytime peaks. RH tracks 
observations but is lower at night. SH agrees well. WS is clearly overestimated. Case V2, cloudy, Site 
B, 39 hr. AT closely follows the damped cycle typical of overcast conditions. RH is broadly consistent 
but somewhat low in the evening. SH remains stable. WS is again overestimated and shows weak 
variability. Case V3, sunny, Site B, 22 hr. AT captures heating and cooling with modest underestimation 
of afternoon maxima. RH timing is good but exhibits a positive nocturnal bias. SH alignment 
deteriorates. WS overestimation persists, especially when observed speeds are small. Case V4, 
sunny, Site A, 22 hr. AT follows observations with about a 1 °C low daytime bias. RH is reasonable but 
positively biased. SH is poorly matched. WS overestimation remains systematic. Overall in four cases, 
AT performance is strong, RH captures phase with variable bias, SH skill depends on season and site, 
and WS shows low skill with persistent positive bias. 

  
Figure 6. Measured and simulated time series of potential air temperature, relative humidity, specific humidity and wind 

speed for the validation four cases. The left panel covers 18 to 22 October 2024 (V1 sunny at Site A followed by V2 cloudy at 
Site B). The right panel covers 25 to 28 March 2025 (V3 sunny at Site B followed by V4 sunny at Site A). Dashed curves are 

observations and solid curves are ENVI-met simulation results. 

4.2.2 Statistical Evaluation 

V1 V2 V3 V4 
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Across the four cases, ENVI-met simulation exhibits strong thermal skill and weak wind skill. 

 Air temperature: Agreement is high, with R² between 0.77 and 0.99, RMSE below 1.5 °C, and MAE 
below 1.0 °C. Bias is small, indicating reliable thermal predictions. 

 Relative humidity: Performance is case dependent, R² ranges from 0.28 to 0.93, typically higher in 
the sunny case (V1, V3). MAPE is 2–8 %, with a tendency to overestimate at night. 

 Specific humidity: Agreement is generally strong in V1, V2 and V4 (R² = 0.87–0.94), but weaker in 
V3 (R² = 0.47). RMSE remains <3 g/kg, reflecting robust bulk-moisture representation. 

 Wind speed: Correspondence is poor (R² = 0.01–0.1), with a systematic positive bias—most 
evident at the open Site B when observed speeds exceed 2 m/s. 

Benchmarking against published thresholds for ENVI-met validation, AT RMSE is within the commonly 
cited 1.31–1.63 °C range, whereas RH MAPE meets the < 5 % criterion only in the better-performing 
case. Overall, the metrics corroborate the time-series findings: temperature and moisture are 
reproduced credibly, while wind variables require caution and, where critical, complementary 
modelling or measurements. (Shi et al., 2020) 

 

 

(ⅰ)  

  
(ⅱ) (ⅲ) 



 
Shun-Yu Yang1, Ying-Chieh Chan2  
 

Proceedings of Smart and Sustainable Built Environment Conference Series         SASBE2025  244 | 248 
 

  
(ⅳ) (ⅴ) 

Figure 7. Measurement and simulation compare for the four validated cases. Panels i–v corresponds to (i) Air Temperature, (ii) 
Relative Humidity, (iii) Specific Humidity, (iv) Wind Speed, and (v) Gust Wind Speed. Points are paired observations and 

simulations; solid line with the coefficient of determination shown. The grey dashed line indicates the one-to-one reference. 
Thermal and moisture variables show strong agreement in most case, whereas wind variables display weak correspondence. 

 

 

 

 

 

Table 4. Validation metrics by case V1–V4 comparing ENVI-met simulations with site collected data; R², RMSE, MAE, and MBE 
for air temperature (°C), relative humidity (%), specific humidity (g/kg), wind speed (m/s), and gust wind speed (m/s). Notes: 

acceptable benchmarks from prior studies are AT RMSE ≈ 1.31–1.63 °C and RH MAPE < 5%. 

variable point n R2 RMSE MAE MBE MAPE d 

Air Temperature 
(°C) 

 
  

V1 157 0.96 0.67 0.56 -0.12  0.99 

V2 157 0.77 0.54 0.45 -0.16  0.94 

V3 89 0.96 1.04 0.87 -0.22  0.99 

V4 89 0.99 0.90 0.80 0.28  0.99 

Relative Humidity 
(%) 

 
  

V1 157 0.90  2.58 1.02 3.51 0.97 

V2 157 0.28  2.16 0.07 2.46 0.73 

V3 89 0.93  4.06 1.25 6.92 0.97 

V4 89 0.87  5.23 -1.05 8.28 0.93 

Specific Humidity 
(g/kg) 

 
  

V1 157 0.87 0.38 0.30 -0.06  0.96 

V2 157 0.94 0.37 0.34 -0.32  0.94 

V3 89 0.40 1.78 1.49 1.48  0.41 

V4 89 0.92 2.17 1.67 1.63  0.65 

Wind Speed 
(m/s) 

 
  

V1 157 0.10 0.48 0.42 0.37  0.47 

V2 157 0.01 1.42 1.32 1.32  0.34 

V3 89 0.08 1.03 0.97 0.97  0.27 

V4 89 0.04 0.65 0.59 0.57  0.14 

Gust Wind Speed 
(m/s) 

 
  

V1 157 0.09 1.08 0.82 -0.39  0.47 

V2 157 0.08 1.51 1.27 -1.19  0.45 

V3 89 0.05 0.90 0.76 0.13  0.42 

V4 89 0.04 0.91 0.74 -0.03  0.22 
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5 Discussion 

This study examined ENVI-met’s ability to reproduce lake-induced microclimatic cooling on a 
subtropical campus and quantified the trade-off between grid resolution, predictive accuracy, and 
computational cost. Across horizontal resolutions from three to nine metres grid, the cooling signal 
associated with Drunken Moon Lake was consistently apparent in air temperature and mean radiant 
temperature, whereas relative and specific humidity showed modest shifts and wind variables were 
comparatively insensitive to resolution. Validation against four monitoring case confirmed high 
accuracy for air temperature, moderate-to-strong accuracy for humidity, and weak accuracy for wind 
speed and gust wind speed, characterised by low correlation and systematic positive bias. 
Importantly, moving from three to six metres preserved the magnitude of the thermal response while 
reducing runtime by more than six times, indicating a practical resolution–accuracy compromise for 
campus and district-scale applications. 

The diurnal analyses further clarify these patterns (Figure 8.). For most hours of the day the magnitude 
of lake cooling is similar across the three grid settings, implying that resolution influences variability 
more than mean effect size. The cooling footprint strengthens during daytime when convective mixing 
and lake–land temperature contrasts are greater, and it weakens at night when stratification limits 
advective exchange. This behaviour is visible across variables but is most coherent in air temperature 
and mean radiant temperature, which are directly affected by radiative forcing and surface heat 
storage. 

These findings are consistent with prior ENVI-met research that reports reliable temperature 
performance but limited fidelity for wind fields. The present contribution extends the literature by 
providing validated evidence for blue-infrastructure cooling in a subtropical setting and by offering 
actionable guidance on grid selection for design practice. For early-stage scenario screening, a six-
metre grid enables iterative modelling at feasible runtimes while retaining the salient thermal signal. 
Given the greater resolution sensitivity of mean radiant temperature, comfort metrics such as PET or 
UTCI should include explicit checks on grid choice. Where wind-dependent decisions are central—
ventilation corridors, wind comfort, or pollutant dispersion—ENVI-met should be complemented by 
higher-order CFD or targeted on-site measurements. 

Limitations for this study includes short monitoring windows at two sites, simplified parameterisations 
for vegetation and water, and turbulence/drag formulations that likely contribute to wind biases. 
Future work should extend seasonal coverage, calibrate biophysical parameters, and employ hybrid 
ENVI-met with other CFD workflows for wind-critical analyses. Overall, ENVI-met provides credible 
temperature and moisture responses to lake cooling at campus scale, while wind remains a weak 
point; the six-metre resolution offers a defensible balance between credibility and computational 
efficiency for climate-sensitive urban design. 



 
Shun-Yu Yang1, Ying-Chieh Chan2  
 

Proceedings of Smart and Sustainable Built Environment Conference Series         SASBE2025  246 | 248 
 

 
Figure 8. Diurnal signature and distributions of lake-induced differences across three grid resolutions. Panels ( i)–(vi) 
correspond to air temperature, mean radiant temperature, relative humidity, specific humidity, wind speed, and wind 

direction. For each variable, the left plot shows the hourly median difference for five pairings (3 m lake minus 3 m no-lake; 6 m 
lake minus 6 m no-lake; 9 m lake minus 9 m no-lake; 6 m lake minus 3 m lake; 9 m lake minus 6 m lake). The right plot 

presents box-and-whisker summaries of the same differences over all hours and points; dots are individual records, the red 
line marks the median, and the blue dot marks the mean. Negative values in the lake versus no-lake comparisons indicate 

cooling. 

6 Conclusions  
Water cooling effect in AT and MRT is evident at all tested grids; a 6 m resolution preserves this signal 
while reducing runtime more than sixfold compared to 3 m grid. Across four cases, AT shows high 
agreement, RH and SH are moderate-to-strong, and wind are weak with positive bias. The study 
contributes validated blue-infrastructure evidence and operational guidance for resolution choice in 
subtropical campus settings. 

 

7 Appendix  
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Appendix Figure A1. Hourly distributions of lake-induced differences across three grid resolutions. Panels i–vi correspond to 
air temperature, mean radiant temperature, relative humidity, specific humidity, wind speed, and wind direction. For each 
hour, box-and-whisker plots summarise five pairwise contrasts: a) 3 m lake minus 3 m no-lake, b) 6 m lake minus 6 m no-
lake, c) 9 m lake minus 9 m no-lake, d) 6 m lake minus 3 m lake, e) 9 m lake minus 6 m lake. Dots are individual records from 
six reference points; the rightmost bundle in each panel aggregates all hours. Negative values in a–c indicate a cooling effect 
by the lake; whereas d–e show resolution effects with the lake present. 
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