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While the presence of various transport infrastructures is essential for completing everyday 
tasks, their maintenance remains a challenge. Remote sensing techniques, such as 
satellites, have emerged as non-destructive and efficient methods, capable of managing this 
challenge by providing predictive maintenance options, large-scale inspections, and cost-
effective solutions. There has been growing interest in this regard, and recent studies have 
highlighted the potential of satellites as an early warning and complementary tool for 
condition assessment, thereby underscoring the need to track trends in usage, identify gaps, 
and explore opportunities for further research. The aim of this study is to provide a 
comprehensive review of satellite applications for assessing transport infrastructure. 
Following the PRISMA guidelines, this study conducts keyword co-occurrence analysis and 
content analysis of selected relevant papers. The results showcase an interest in utilising 
satellite imagery for early decision-making in maintaining the safety and resilience of 
transport infrastructures. Furthermore, the use of Synthetic Aperture Radar (SAR) satellites, 
particularly Sentinel-1 and Cosmo-SkyMed, was found to be more profound for transport 
assessment than optical satellites. The primary application of satellite imagery was 
associated with structural health monitoring and change detection, with some studies 
advocating for the integration of satellite data with ground-based techniques to yield holistic 
assessments. Performing economic analyses, developing regulatory standards, and 
sustainability metrics were highlighted as gaps. These findings reinforce the potential of 
satellite data in enhancing maintenance strategies and pave the way for future research to 
explore the usage of satellite imagery for comprehensive and resilient transport infrastructure 
monitoring.  
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1 Introduction 
The built environment encompasses all physical structures and systems made by human beings to 
support their daily activities of living, working, and recreation (Portella, 2014). Within this built 
environment, civil infrastructure systems comprising buildings, transport infrastructure, and other 
systems play crucial roles in ensuring the seamless operation and progress of society. To achieve 
optimal functionality, these civil infrastructural elements are usually designed and constructed to be 
durable (Lebaku et al., 2024). However, in modern times, having resilient infrastructure is not only tied 
to durability but also to adaptability and sustainability. These ties have therefore transformed the 
outlook of research in the built environment and necessitated investigations into innovative ways of 
developing and maintaining various civil infrastructure.  

Transport infrastructure stands out amongst the civil infrastructure as a crucial system in need of 
continuous monitoring and maintenance due to deteriorations that affect its safety and serviceability 
(Ponzo et al., 2021). Insights from various infrastructure management agencies and research have 
shown that early detection and maintenance practices are a guarantee for improved transport resilience 
(Lebaku et al., 2024; Ponzo et al., 2021). Hence, efforts are being made to improve condition 
assessment methods by transitioning from manual field inspections to non-destructive techniques. 
These non-destructive techniques are available in two forms: vibration-based methods and remote 
sensing methods (Lebaku et al., 2024; Guo et al., 2022). Vibration-based methods utilise 
accelerometers and global positioning systems (GPS) for data collection, whereas remote sensing-
based methods utilise sensors mounted on unmanned aerial vehicles (UAVs), satellites, aeroplanes, 
and survey vehicles for data collection (Guo et al., 2022). Evidently, the recent advancements in satellite 
technology and image processing techniques, coupled with the demand for large-scale monitoring, 
have amplified the potential of using satellites for infrastructure condition assessment (Lebaku et al., 
2024; D'Aranno et al., 2021). Taking advantage of this technological reform and advancement, this study 
reviews the applications of satellite for transport infrastructure assessment. 

Previous studies have demonstrated significant interest in remote sensing for transport infrastructure 
assessment. However, a gap remains in the practical application of these sensing technologies 
(Benedetto et al., 2022). This gap has led to several literature analyses on the subject matter, but none 
have specifically targeted the applications of satellites alone. For instance, Quqa et al. (2025), Rakoczy 
et al. (2024), and Casas et al. (2024) reviewed the applications of remote sensing technologies for 
bridges only, without considering other types of transport infrastructure. Koohmishi et al. (2024), 
Benedetto et al. (2022), and Tosti et al. (2021) also explored the latest developments in remote sensing. 
However, the study focused on the integration potential of ground-penetrating radar (GPR) and 
interferometric synthetic aperture radar (InSAR). Additionally, Gagliardi et al. (2023) provided a 
comprehensive review of satellite applications and non-destructive testing methods for transport 
infrastructure assessment. However, their scope of satellite applications was limited to only multi-
temporal InSAR. To resolve this, this study synthesises insights from multiple studies to answer two 
main questions. (1) What are the satellite technologies and the associated data processing techniques 
used by the transportation industry? (2) What are the main applications of satellite imagery for transport 
infrastructure assessment? 
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2 Methodology 
A mixed-methodology approach combining scientometric and systematic analyses was employed in 
this study. The ability to gain detailed insights into existing literature surrounding the subject matter and 
identify potential areas for further research was the guiding principle in adopting this methodology. To 
ensure transparency of the process and complete comprehension among the scholarly community, the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which 
include database identification, keyword selection, establishment of inclusion and exclusion criteria, 
and snowballing, were adhered to (Page et al., 2021).   

Two databases, Scopus and Web of Science, were selected for this study. This selection was made due 
to the global recognition of these databases for their vast bibliometric coverage and compatibility with 
scientific mapping tools (Gusenbauer, 2024). Once the databases were selected, Boolean search terms 
were formed. These search terms were guided by the research questions and included terms such as 
"satellite", "condition assessment," and "transport infrastructure," as well as their alternatives. The 
various lengths and spellings of the search terms were accounted for using truncated symbols and 
joined together using operators such as "AND" and "OR" to help refine the search results. Further 
improvements to the search results were achieved by establishing inclusion and exclusion criteria. Due 
to the scope and nature of the study area, the inclusion criteria were set to comprise all peer-reviewed 
journal articles and conference papers. Case studies and experimental studies utilising satellite 
imagery for any transport infrastructure were also included. Non-English papers, records without full-
text availability, and publications unrelated to engineering comprised the exclusion criteria for this 
study.  

Following the establishment of the inclusion and exclusion criteria, the PRISMA guidelines were 
adhered to in selecting suitable papers for the review (See Figure 1). This operation yielded a total of 149 
papers for the study. The selected papers were then analysed using scientometric and systematic 
methods. The scientometric analysis, which visually presents academic knowledge and contributions, 
and is limited in this study to keyword co-occurrence, was undertaken using VoSviewer. This application 
was selected due to its friendly interface, large network display, and specialised text-mining 
functionalities (van Eck & Waltman, 2014). For the systematic analysis, the contents of the selected 
papers were assessed in line with the research questions. They were divided into two main parts: 
satellite types and processing techniques, as well as the applications of satellite imagery for assessing 
transport infrastructure. The systematic analysis aimed to evaluate the current literature, identify gaps, 
and propose further studies. 
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Figure 1. PRSIMA diagram for screening and paper selection 

Source: Authors’ Construct 

3 Scientometric Analysis (Keyword Co-occurrence) 
Keywords represent the basic content of research articles and define the specific areas covered within 
a particular field (van Eck & Waltman, 2014). This review utilised a co-occurrence analysis of keywords, 
employing "all keywords" as the unit of analysis and "full counting" as the method of measurement. A 
minimum occurrence threshold of 5 was applied, resulting in the extraction of 46 keywords from a total 
of 1246. To refine the dataset, synonymous terms such as "satellite," "satellite data," and "satellite 
imagery," as well as "structural monitoring" and "structural health monitoring," were merged. 
Additionally, unrelated terms, such as "case studies," "Shanghai," and "China," were excluded. 
Ultimately, the analysis identified 42 significant items distributed across 3 clusters.   

The findings illustrated in Figure 2 reveal that the keywords "interferometric synthetic aperture radar 
(InSAR)," "synthetic aperture radar (SAR)," and "structural health monitoring (SHM)" are the most 
frequently used. This outcome highlights the growing emphasis among researchers on utilising InSAR 
for SHM. The first cluster (green) consists of 18 items representing scholarly interests in the application 
of satellite and radar methods for SHM, particularly for bridges. It further highlights the interest of the 
scholarly community and industry professionals in seeking proactive strategies and real-time alerts for 
minimising failure or collapse of various transport infrastructure and utilising satellite imagery for 
informing prompt engineering interventions.  
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Figure 2. Network Visualisation of Keywords 

Source: Authors’ Construct 

The second cluster (red) also comprised 18 items, underscoring the use of InSAR and SAR for 
deformation monitoring in various transport infrastructure. In this cluster, the presence of satellite types 
such as "Sentinel-1," "Cosmo-SkyMed," "Envisat," and "Terrasar-X" highlights the dominant usage of 
these satellite constellations for data collection. Furthermore, the appearance of keywords such as 
"road networks" and "railway" suggests the use of these remote sensing methods for large-scale 
infrastructure monitoring. The third cluster comprises only six items related to the use of multiple 
methods for non-destructive assessment of various transport infrastructure. Terms such as "geodetic 
satellites," "data fusion," and "GPR" indicate the need for integration to make a holistic assessment of 
the condition of the transport infrastructure. Additionally, it highlights the emerging trend in research 
towards the integration of satellite-based approaches with ground measurements for macro and micro 
inspection and assessment. Overall, the results of this analysis indicate a trajectory of research moving 
towards cost-effective and data-driven methods to maintain the safety and resilience of transport 
infrastructure. 

4 Results and Discussion of Systematic Analysis 

4.1 Types of Satellites and Processing Techniques 
The demand for radar assessments has led to the emergence of several satellite missions. Based on the 
analysis of the literature, the satellite technologies used in the transport industry were identified and 
grouped into two main categories: optical Earth observation satellites and SAR satellite missions (See 
Figure 3a). Under these two categories, the optical earth observation satellites were primarily limited to 
the use of Landsat, with minor usage of other optical missions such as Worldview and the GEOS series. 
Six primary SAR satellites were identified, with Cosmo-SkyMed and Sentinel-1 recording the highest 
usage rates. This observation confirms the details of the second cluster (red) in the quantitative 
analyses, where these satellites were flagged in the keywords. 
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(a) 

 
(b) 

Figure 3. Overview of Satellite Classifications: (a) Types of Satellite Missions (b) Types of Processing Techniques 

Source: Authors’ Construct 

Optical satellites produce images capturing the visible portions of sunlight (Kim et al., 2024). They exist 
as hyperspectral, panchromatic, and multispectral images, consisting of single to multiple bands 
(Bashar et al., 2022). On the other hand, SAR images are produced by means of radar pulses that 
measure reflected waves from surfaces such as the ground or ocean. Unlike optical satellites, which 
depend on sunlight for accurate readings, SAR satellites can produce images at night and in adverse 
weather conditions (Kim et al., 2024; Selvakumaran et al., 2021). Due to this limitation, it is evident that 
for transport infrastructure monitoring, which requires continuous evaluation, SAR satellites are the 
best-suited and most adopted. These SAR satellites, however, operate in different bandwidths and are 
subject to access restrictions. The TerraSAR-X satellites from the German Aerospace Centre and the 
Italian Cosmo-SkyMed operate on the X-band, whilst the Advanced Land Observing Satellite (ALOS) 
from the Japan Aerospace Exploration Agency (JAXA) operates on the L-band. The Sentinel-1 satellite 
from the European Space Agency (ESA) operates on the C-band, with ERS-1/2, ENVISAT, and RADARSAT-
1 being the first production of C-band data (Stawinoga et al., 2021; Meyer et al., 2020).  

In processing images obtained from various satellite constellations, several researchers have explored 
different image processing techniques. From the selected papers, optical satellite images were 
predominantly found to be processed using spectral index analysis, GIS-based analysis, and machine 
learning or deep learning techniques, whilst SAR images were primarily processed using InSAR 
techniques. A summary of satellite processing techniques is shown in Figure 3b. Depending on the 
purpose and application of SAR imagery, various forms of InSAR techniques have been adopted. These 
techniques can assess large coverage networks, provide remote and high-density measurements (Kim 
et al., 2024; Selvakumaran et al., 2021). This study analysed the major InSAR techniques and their 
differences, providing a summary in Table 1. Among the earliest methods developed, Differential InSAR 
(DInSAR) remains the foundation for broad geophysical assessments and regional surveys (Stawinoga 
et al., 2021). Nevertheless, its limitations in precision and vulnerability to atmospheric noise led to the 
advancement of Time series InSAR (TS-InSAR) or Multi-temporal InSAR (MT-InSAR) approaches aimed 
at achieving higher accuracy in infrastructure monitoring (Xing et al., 2018).  

Permanent or persistent scatterer InSAR (PS-InSAR) is the most widely used MT-InSAR technique, and 
its reliance on stable reflectors makes it an ideal choice for monitoring various transport networks. From 
the reviewed literature, some studies showed advancements to this technique by adopting an InSAR 
imaging mode known as Terrain Observation with Progressive Scans SAR (TOPSAR) (Schlögl et al., 2022), 
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whilst others opted for the Stanford Method for PS-InSAR (STAMPS), which provides better performance 
in urban environments (Yaşar & Eronat, 2023; Vadivel et al., 2020). Other emerging MT-InSAR techniques 
surfaced in the analysis, including Small Baseline Subset (SBAS), for analysing distributed targets, 
SqueeSAR, Distributed scatterer (DS-InSAR), and temporal coherence-based models like Temporal 
Coherent Point InSAR (TCP-InSAR) and Temporary Scatterers Stacking InSAR (TSS-InSAR), which offer 
solutions for low coherence regions and complex terrains. Corner reflector InSAR and Differential SAR 
Tomography extend these capabilities, providing novel approaches for artificial reflector analysis and 
three-dimensional deformation modelling, respectively (Markogiannaki et al., 2022; Gagliardi et al., 
2020; Xing et al., 2018). 

Table I. Comparison of InSAR Processing Techniques 

Type of 
technique 

Category of 
InSAR 

technique 

Scatterer type Sensitivity to 
atmospheric 

noise 

Level of 
precision 

Source 

Differential InSAR 
(DInSAR) 

InSAR 
processing 
technique 

Natural terrain 
features 

Highly sensitive Low precision (Giordano et al., 2022; 
Infante et al., 2019; Miele 
et al., 2023; Sousa & 
Bastos, 2013)  

Persistent or 
Permanent 
Scatterer InSAR 
(PS-InSAR) 

Scatterer-
based MT-
InSAR 
technique 

Persistent 
scatterer (PS)/ 
stable reflectors  

Less sensitive High precision (Cusson & Stewart, 
2024; Gagliardi et al., 
2020; Koudogbo et al., 
2018; Vaccari et al., 
2018; Qin et al., 2017) 

Small Baseline 
Subsets (SBAS-
InSAR) 

Scatterer-
based MT-
InSAR 
technique 

Distributed 
scatterers (DS) 

Moderately 
sensitive 

Moderately 
precise as it 
trades some 
precision for 
coverage and 
flexibility 

(Stawinoga et al., 2021; 
Karimzadeh & Matsuoka, 
2020; Zhu et al., 2019; 
Selvakumaran et al., 
2018) 

SqueeSAR Advanced MT-
InSAR 
technique 

Persistent and 
distributed 
scatterers 

Less sensitive High precision, 
but slightly 
lower when 
compared to PS-
InSAR 

(Henrion et al., 2024; 
Sartorelli et al., 2021; 
Hoppe et al., 2019; 
Koudogbo et al., 2018; 
Vaccari et al., 2018; 
Barla et al., 2016) 

Distributed 
Scatterer InSAR 
(DS-InSAR) 

Scatterer-
based MT-
InSAR 
technique 

Weak 
distributed 
scatterers 

Moderately 
sensitive 

Low precision  (Zhou et al., 2025; 
Koudogbo et al., 2018) 

Corner Reflector 
InSAR (CRInSAR) 

Scatterer-
based MT-
InSAR 
technique 

Artificial 
scatterers 
(corner 
reflectors) 

Less sensitive High precision (Xing et al., 2018) 

Temporary 
Scatterers 
Stacking InSAR 
(TSS-InSAR) 

Scatterer-
based MT-
InSAR 
technique 

Temporary 
scatterers 
(varies from 
PS/DS or TCP) 

Less sensitive High precision 
but not reliable 
for long-term 

(Dai et al., 2018) 

Temporal 
Coherent Point 
InSAR (TCP-
InSAR) 

Scatterer-
based MT-
InSAR 
technique 

Temporal 
coherent points 
(TCP) 

Less sensitive Moderately 
precise, as it 
balances 
coherence and 
coverage 

(Zhang et al., 2018) 

Differential SAR 
Tomography (D-
TomoSAR) 

Advanced MT-
InSAR 
technique 

Persistent 
scatterers 

Less sensitive Varied levels 
due to height 
differences 

(Markogiannaki et al., 
2022) 

Source: Authors’ Construct 
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4.2 Applications of Satellite Imagery for Transport Infrastructure Assessment 

The application of satellite imagery for monitoring and surveillance of transport infrastructure has 
become increasingly popular among civil engineers and researchers. Notably, they have been used in 
monitoring highways (Tessema et al., 2024; D'Aranno et al., 2021), airport runways (Gagliardi, Ciampoli, 
et al., 2021), railways (Shami et al., 2022), and bridges (Pięk & Pawłuszek-Filipiak, 2025; Qin et al., 2019). 
In rare cases, they have also been used for subway tunnels (Perissin et al., 2012).  

With these infrastructure applications, studies have demonstrated the use of satellite techniques to 
produce datasets that require minimal preprocessing for determining displacement levels, 
deformations, and unevenness on pavements, compared to methods such as crack meters and 
inclinometers (Shami et al., 2022; Gagliardi et al., 2021). Utilising the PS-InSAR technique, Gagliardi et 
al. (2021) devised a method that converts the vertical and horizontal velocity components of satellite 
imagery acquisition geometries to calculate the actual ground deformation and ultimately determine 
the deformation pattern of an airport runway. Similarly, Tessema et al. (2024) assessed network-level 
road deformation using a blend of Sentinel-1 and TerraSAR-X data. Despite the precision and ease of 
velocity determination of PS-InSAR, only the data points from TerraSAR-X showed clear and detailed 
deformation patterns at strategic areas due to its higher resolution compared to Sentinel-1. Identifying 
bridge deformations using satellite imagery was the focus of most studies. However, the complex nature 
of bridges poses some challenges, especially in interpreting deformation maps from scans. To tackle 
these challenges, Qin et al. (2019) developed a coherence-driven point targeting approach based on 
DInSAR to analyse 3D deformation and visualise bridges. The developed algorithm, combined with the 
DInSAR technique, enabled the identification of symmetrical and asymmetrical deformations on 
bridges, making the outcome suitable for practical bridge structural health monitoring.  

The deformations of bridges and other transportation infrastructure are monitored continuously for 
specific timeframes to observe their structural changes using satellite techniques, such as DInSAR (Pięk 
& Pawłuszek-Filipiak, 2025; Qin et al., 2019), PS-InSAR (Cusson & Stewart, 2024), and DS-InSAR (Zhou 
et al., 2025). Time series predictive monitoring techniques are often the most successful for these 
observations, given the need to continuously observe the structure's responses to load. However, other 
studies have adopted numerical modelling, especially for infrastructural thermal deformations (Ponzo 
et al., 2024). However, numerical methods are computationally resource-intensive, resulting from 
extensive parameter optimisations, thereby requiring significant capital investments. 

To better understand the cause-and-effect relationship between transport infrastructure and its 
environment, as well as providing holistic monitoring results, some scholars have turned towards multi-
assessment approaches. For instance, D'Aranno et al. (2021) investigated the slope displacement and 
stability of a viaduct on sedimentary plains by combining temperature sensors, an inertial measurement 
unit (IMU), and the SBAS-InSAR to measure the causes of viaduct deformation and the relationship with 
the embankment. Bianchini Ciampoli et al. (2020) also explored the potential for integrating data from 
GPR with InSAR techniques for assessing linear transport infrastructure. Additionally, Ibrahim et al. 
(2024) investigated the impact of subsidence on roads by validating satellite results with ground-based 
techniques, including UAVs and smartphones.  

Satellite technologies spur the creation of digital twin systems for the structural monitoring of transport 
infrastructure (Ponzo et al., 2024). The satellite data provide continuous information on changes due to 
the infrastructure's reaction to loads, while predictive analyses are conducted using machine learning 
mechanisms. The digital twin enables real-time monitoring and assessment, relying on the sustained 
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and reliable high-quality data provision. Simulating future structural scenarios is also possible when 
digital twin systems are combined with temporal satellite data and deformation patterns to inform 
maintenance schedules and prevent hazards. Computer vision and image processing techniques are 
also fundamental for detecting, visualising, and estimating the extent of deformations using the imagery 
(Yussif et al., 2025). Furthermore, some studies employed satellite images to conduct risk assessments 
and classifications along transport networks (Miano et al., 2024; Suárez-Fernández et al., 2024).  

The transportation industry has demonstrated extensive applications of satellite technologies for SHM, 
change and damage detection, risk assessment, and predictive analysis. However, most of these 
applications remain in the experimental stages, thus requiring more studies to conduct real-time case 
studies and assessments. Liaising the outcome of Figure 2 with the content analysis, it was observed 
that most studies predominantly utilized satellites for structural health monitoring in bridges. This 
observation opens up additional areas for further research on underexplored transport networks, 
including roads and railways.  

4.3 Opportunities for Future Research  

The outcome of this analysis has revealed significant progress in developing processing methodologies 
for transport infrastructure assessments, yet several critical challenges remain. Most of these 
techniques are utilised in the absence of hazard assessment frameworks, which, when integrated, 
could enable holistic condition evaluation and enhance infrastructure resilience. Research work should 
focus on developing multidisciplinary models that fuse satellite-derived information with diverse hazard 
indicators, such as risk assessment metrics, human behavioural indicators, and climate-induced 
stressors. This integration could support more effective resilience-building strategies and long-term 
sustainability planning for transport systems. Furthermore, the reviewed literature showed an emerging 
interest in leveraging deep learning and machine learning techniques to mitigate atmospheric noise in 
satellite observations. However, most of these atmospheric correction models remain regionally 
tailored and fail to account for localised weather variability. Future research should build upon current 
trends and explore the potential of quantum-enhanced processing and IoT sensor-based integration to 
improve the accuracy and applicability of satellite-derived assessments.  

With the emergence of many processing methodologies, future research into workforce training and 
development is also essential. Studies could explore workers' adaptability to using satellite imagery and 
training media to achieve higher comprehension and usability rates. Examining the application of 
satellites through the lens of sustainability, the review reveals a gap in current practices. Exploring its 
potential to detect large surface defects, encroachment activities around transport routes, and material 
degradation is yet to be considered. Moreover, studies investigating its economic benefits, 
environmental impacts, and social value in comparison with other existing ground-based techniques 
remain limited. Future research is needed to bridge these gaps. Additionally, with structural health 
monitoring being a primary application of satellite imagery, future research could focus on developing 
deformation ratings that can be integrated with existing condition ratings to assess the overall condition 
of transport infrastructure. 

5 Conclusion 
Recently, urbanisation and population growth have led to increasing climatic issues, and the need for 
more resilient infrastructure has become paramount. The transport infrastructure is not exempt. From 
exploring sustainable materials, smart assessments, and innovative construction methods, 



 
Annabel Morkporkpor Ami Dompey1, Abdul-Mugis Yussif1, Tarek Zayed1 

Proceedings of Smart and Sustainable Built Environment Conference Series             SASBE2025  136 | 140 
 

researchers, in collaboration with industry professionals in the civil and construction industry, have 
discovered the use of satellite remote sensing technologies as a remedy for keeping transport networks 
durable, adaptable, and sustainable. The extent to which these technologies are applied is the focus of 
this review study. Although limited in scope and depth of analysis, this review has synthesised the 
current applications of satellites by the transport industry and paved the way for further research in 
exploring the following areas towards a resilient transport industry. (1) develop automated early warning 
detection systems, (2) improve current methodologies and data processing techniques, (3) explore 
alternative uses of optical satellites by the transport industry, (4) create and update regulatory 
standards and sustainability metrics.  

To supplement the efforts of researchers in developing a resilient transportation industry, transportation 
departments and civil engineering firms should document the costs of their traditional and ground-
based technological inspections to establish a baseline for cost metrics and facilitate cost-benefit 
assessments. Additionally, agencies that adopt satellite monitoring as a continuous and early warning 
system could be incentivised to promote its widespread adoption. There should be a constant effort to 
make satellite data more affordable and easily accessible. Continuous professional training sessions 
and workshops should be organised for inspectors to enhance their skill set and specialisation in 
processing satellite imagery, subject to the findings of researchers. Pilot programs, funded by the 
government, could be made available to accelerate the development, testing, and adoption of satellite 
standards.  
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