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The construction industry is known as a slow adopter of technological change, yet Artificial 
Intelligence (AI) is increasingly challenging this trend by becoming a major catalyst for 
innovation. However, the readiness of the construction industry’s future workforce to adopt 
AI remains unclear. The purpose of this study is to evaluate the readiness and intention of 
students (i.e., the future workforce) to adopt AI in their future professional practice. This study 
employs quantitative research design using a structured questionnaire based on the UTAUT 
2 framework. The survey was distributed to undergraduate and postgraduate students in civil 
engineering, architecture, building surveying, quantity surveying, and construction project 
management programs. The questionnaire includes items measuring key UTAUT-2 
constructs such as performance expectancy and effort expectancy, all contextualized to AI 
technologies. The study identifies some UTAUT 2 constructs that influence students’ 
readiness and intention to adopt AI in their future careers. Findings also reveal the levels of AI 
use, exposure, and awareness among students. This study relies on self-reported data, which 
may be influenced by social desirability bias or limited understanding of AI technologies 
among students. This study aligns with SASBE 2025 themes on data science and artificial 
intelligence for optimization of the built environment, The study offers valuable implications 
for curriculum development, industry-academia collaboration, and students’ preparation for 
future job demands. This research is among the first to apply the UTAUT 2 framework to 
assess AI adoption specifically within the context of construction students. While existing 
studies have explored technology adoption in the construction industry, limited work has 
focused on perceptions and preparedness of students regarding AI integration. 
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 Highlights  
This study: 
• Identifies which UTAUT2 constructs most influence students’ AI adoption intentions. 
• Offers insight for integrating AI into curricula and training. 
• Identifies perceived obstacles in the way of adoption such as cost and lack of support. 
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1. Introduction 

The construction industry has long been characterized by its resistance to technological change 
(Elkhayat, Adel, & Marzouk, 2024; Ogunmakinde, Aghajani, & Memari, 2025). Despite being one of the 
largest and most influential sectors that contributes significantly to GDP and employment in many 
economies, it has traditionally lagged behind other industries in embracing digital transformation 
(Alibakhshi, Saffarian, & Hassannayebi, 2024; Elbashbishy & El-Adaway, 2024; Hampson, Kraatz, & 
Sanchez, 2014; Ogunmakinde et al., 2025; Regona, Yigitcanlar, Xia, & Li, 2022). This sluggishness is 
evident in the slow integration of automation, digital tools, and innovative management practices into 
mainstream construction processes (Nnaji, Okpala, Awolusi, & Gambatese, 2023). While sectors such 
as manufacturing, healthcare, and finance have made strides in embedding technologies like Artificial 
Intelligence (AI) into their operational frameworks, construction has been more tentative, cautious, and 
fragmented in its approach to such innovations (Alibakhshi & Hassannayebi, 2025; Cao, 2022; Kim, 
Kong, Lee, & Lee, 2022; Okanlawon et al., 2025; Park et al., 2020; Regona, Yigitcanlar, Hon, & Teo, 2024; 
Sajjadi, Dinmohammadi, & Shafiee, 2025). 

In recent years, however, there has been a discernible shift in this paradigm. AI is emerging as a 
transformative force within the construction industry, offering new possibilities in design optimization, 
project scheduling, risk analysis, safety management, cost estimation, and facility maintenance (Ali, 
Burhan, Kassim, & Al-Khafaji, 2022; Bahroun, Tanash, Ad, & Alnajar, 2023; Okanlawon et al., 2025; Saad, 
Haris, Ammad, & Rasheed, 2024; Usama, Ullah, Muhammad, Islam, & saba Hashmi, 2024). These 
capabilities are increasingly being recognized not just as enhancements to existing workflows, but as 
enablers of entirely new business models and construction paradigms (Regona et al., 2022). For 
instance, predictive analytics can anticipate delays or cost overruns (Afzal, Yunfei, Nazir, & Bhatti, 2021; 
Khodabakhshian, Malsagov, & Re Cecconi, 2024; Lhee, Flood, & Issa, 2014; Tripathi & Mittal, 2024), 
computer vision can be used for progress and safety monitoring on-site (Hsieh, Chen, Chen, & Wu, 
2024; Irizarry & Karan, 2012; Perera et al., 2025; Rabbi & Jeelani, 2024), and generative design algorithms 
can assist architects and engineers in producing more efficient and sustainable structures (Chew, 
Wong, Tang, Yip, & Maul, 2024). As such, the role of AI is no longer peripheral, and it is becoming central 
to the future trajectory of construction practice. 

However, the successful integration of AI in construction hinges not only on technological development 
and investment but also on the human capital that will operate, manage, and innovate with these tools 
(Hewavitharana, Nanayakkara, Perera, & Perera, 2021). In particular, the readiness of the future 
construction workforce, students currently enrolled in construction-related disciplines, will be a critical 
determinant of how smoothly and effectively AI can be adopted in the coming decades (Vázquez-Parra, 
Henao-Rodríguez, Lis-Gutiérrez, & Palomino-Gámez, 2024). The workforce's preparedness will shape 
how rapidly the industry adapts to technological advancements and how effectively it leverages them 
for performance improvement and competitive advantage (ElZomor, Pradhananga, Santi, & Vassigh, 
2020; Sakib, 2022) . Despite this growing importance, there remains a conspicuous gap in the academic 
and practical understanding of how future professionals in the construction sector perceive AI, and how 
willing and prepared they are to adopt these technologies in their careers (Na, Heo, Choi, Kim, & Whang, 
2023). While several studies have examined technology acceptance among construction professionals, 
project managers, and contractors (Wu, Yan, Zhu, & Yang, 2004), only few have explored these issues 
from the perspective of students—those who will soon transition into these professional roles (Wen, 
Adhikari, & Latifinowsoud, 2024). 
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The Unified Theory of Acceptance and Use of Technology (UTAUT) is a model developed to explain user 
intentions to adopt technology and subsequent usage behaviour (Venkatesh, Morris, Davis, & Davis, 
2003). It integrates elements from eight previous technology acceptance models, focusing on four core 
constructs: performance expectancy, effort expectancy, social influence, and facilitating conditions. 
UTAUT2 extends the original model by incorporating three additional factors, hedonic motivation, price 
value, and habit, making it more suitable for consumer and individual contexts (Venkatesh, Thong, & Xu, 
2012). This study seeks to address the gap by evaluating the readiness and intention of students in 
construction-related disciplines to adopt AI technologies in their future professional practice. Figure 1 
illustrates the key factors influencing user acceptance and use of technology, including performance 
expectancy, effort expectancy, social influence, and facilitating conditions. It extends the original UTAUT 
by adding hedonic motivation, price value, and habit as new determinants. 

Figure 1: UTAUT 2 framework (Chang et al., 2019) 

 

Table 1 outlines the key constructs of the UTAUT2 model along with their definitions. These include core 
factors, as well as extended variables. Together, these constructs form the theoretical basis for 
analysing users’ behavioural intention and actual technology use. 

Table 1: Summary of UTAUT 2 Constructs and Definitions (Venkatesh et al., 2012) 

Construct Definition 

Performance Expectancy (PE) 
The degree to which using a technology will provide benefits to 
consumers in performing certain activities. 

Effort Expectancy (EE) The degree of ease associated with consumers’ use of technology. 
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Social Influence (SI) 
The extent to which consumers perceive that important others believe 
they should use a particular technology. 

Facilitating Conditions (FC) 
Consumers’ perceptions of the resources and support available to 
perform a behaviour. 

Hedonic Motivation (HM) The fun or pleasure derived from using a technology. 

Price Value (PV) 
Consumers’ cognitive trade-off between the perceived benefits of the 
technology and the monetary cost. 

Habit (H) The extent to which people tend to perform behaviours automatically 
because of learning. 

Behavioural Intention (BI) 
The degree to which a person has formulated conscious plans to use or 
continue using the technology. 

Use Behaviour (UB) The actual usage of the technology by the consumer. 

 

This study evaluates AI adoption and readiness among architecture and built environment students 
using UTAUT2. While existing literature on AI in the built environment primarily focuses on its application 
in professional practice, project optimization, or technological development, there is limited research 
addressing how future professionals, particularly students, are being prepared for this digital 
transformation. This study offers a novel contribution by evaluating AI adoption and readiness among 
architecture and built environment students, providing one of the first data-driven assessments of 
student perspectives, confidence, and institutional support regarding AI integration. This research 
directly aligns with the SASBE 2025's key theme of "Data Science, Artificial Intelligence... for 
Optimization of Built Environment," providing crucial insights into preparing future professionals. More 
broadly, the study supports additional SASBE 2025 themes, including people-centred design systems, 
smart and sustainable design, and sustainable urban development, by addressing the role of digital 
competency in shaping resilient, inclusive, and technologically advanced built environments. 

The next section presents a detailed literature review on the application technology adoption studies. 
The methodology section follows, describing the research design, survey development, data collection 
process, and the analytical approach employed. Subsequently, the results section presents the key 
findings related to students’ readiness, intention, and influencing factors for AI adoption. The discussion 
section then interprets these findings in light of existing literature, highlighting their implications for 
academia and industry. Finally, the paper concludes by summarizing the main contributions, discussing 
limitations, and suggesting directions for future research. 

2. Literature Review 

The construction industry is frequently described as conservative, fragmented, and slow to adopt 
emerging technologies (Oesterreich & Teuteberg, 2016; Olanrewaju, Chileshe, Babarinde, & 
Sandanayake, 2020). Unlike other sectors such as manufacturing, healthcare, and finance, where 
digital transformation has significantly reshaped business processes, the construction sector 
continues to rely heavily on manual labour, traditional project management techniques, and long-
established practices (Oke, Aliu, Farhana, Jesudaju, & Lee, 2024; Shaheen, 2021).  
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Research on technology acceptance has been dominated by the Technology Acceptance Model (TAM), 
originally developed by Davis (Davis, 1989a). TAM posits that perceived usefulness and perceived ease 
of use directly influence users’ Attitude and behavioural intention, which in turn affect actual use 
(Davies & Harty, 2013). Extensions such as TAM2 (Venkatesh & Davis, 2000) and TAM3 (Venkatesh & 
Bala, 2008), incorporate determinants like subjective norms, experience, output quality, and computer 
self-efficacy, enhancing its explanatory power. Building on these earlier models, UTAUT unified eight 
major theories, including TAM and TPB, into a comprehensive framework with four core constructs: 
Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, moderated 
by age, gender, experience, and voluntariness. UTAUT has been validated across diverse domains ( 
e‑government, m‑learning, mobile banking, and found to explain up to ~70 % of the variance in 
Behavioural Intention and ~50 % in technology use (Yu, 2012; Zeebaree, Agoyi, & Aqel, 2022).  

Despite the proven effectiveness of UTAUT, some critics note its employee-centric origins, limited direct 
effects, and potential contextual constraints (Shachak, Kuziemsky, & Petersen, 2019; Williams, Rana, 
Dwivedi, & Lal, 2011). A systematic review of over 650 UTAUT2 studies confirms its robustness and 
predictive improvements (74 % for intention, 52 % for use), though researchers often augment it with 
context-specific variables (Tamilmani, Rana, & Dwivedi, 2017). Table 2 provides a comparative summary 
of key technology acceptance models, including TAM, TAM2, TAM3, UTAUT, and UTAUT2. It highlights 
the core constructs, key extensions, strengths, and limitations of each model, offering a clear overview 
of their evolution and relevance to technology adoption research. 

Table 2: Summary of Key Technology Adoption Models and Their Characteristics  

Model Core Constructs 
Moderators / 
Extensions Strengths Limitations 

 
References 

TAM 
PU, PEOU, 
Attitude, BI, Use 

External variables 
(social influence, 
system quality)  

Simple, 
widely 
validated 

May overlook 
social/contextual 
factors 

 
(Davis, 1989b) 

TAM2 / 
TAM3 

Adds social 
norms, 
experience, 
output quality, 
self-efficacy 

Experience, result 
demonstrability, 
etc. 

Better 
explanatory 
power 

Increased 
complexity; still 
limited scope 

 
(Venkatesh & Bala, 
2008; Venkatesh & 
Davis, 2000) 

UTAUT PE, EE, SI, FC, BI, 
Use 

Age, gender, 
experience, 
voluntariness 

Integrative, 
strong 
predictors 

May lack 
context-specific 
factors 

 
(Venkatesh et al., 2003) 

UTAUT2 

PE, EE, SI, FC + 
Hedonic 
Motivation, Price 
Value, Habit, BI, 
Use 

Removed 
voluntariness; 
retains other 
demographics 

Tailored for 
consumers; 
robust 

Complex; still 
expanded often 

 
 
(Venkatesh et al., 2012) 

 

The relevance of UTAUT 2 to the current study lies in its comprehensive consideration of both utilitarian 
and experiential factors that influence technology adoption. In the context of AI adoption among 
construction students, performance expectancy (the belief that AI will improve job performance) and 
effort expectancy (the perceived ease of use of AI technologies) are especially pertinent. Social 
influence (how peers, educators, and industry figures shape students’ attitudes toward AI) is another 
critical factor in the construction education environment, where learning often occurs through 
collaborative, project-based activities. 

https://en.wikipedia.org/wiki/Technology_acceptance_model?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Technology_acceptance_model?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Technology_acceptance_model?utm_source=chatgpt.com
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Exposure to AI during formal education is a significant determinant of future adoption. Students who 
encounter AI tools and concepts as part of their academic programs are more likely to develop positive 
attitudes toward their use and to feel confident in applying them in professional settings (Bates, Cobo, 
Mariño, & Wheeler, 2020; Hinojo-Lucena, Aznar-Díaz, Cáceres-Reche, & Romero-Rodríguez, 2019). 
However, studies suggest that AI integration into construction curricula remains limited, often 
overshadowed by more established digital technologies such as BIM and CAD (Sawhney, Riley, Irizarry, 
& Riley, 2020). 

3. Methodology 

This study employed a quantitative research methodology to investigate the readiness and intention of 
construction students to adopt Artificial Intelligence (AI) technologies in their future professional 
practice. The UTAUT 2 model served as the theoretical framework for this research. The model has been 
extensively validated in technology adoption studies and includes key constructs such as performance 
expectancy, effort expectancy, social influence, facilitating conditions, and behavioural intention. Each 
construct was carefully contextualized to the specific focus of AI adoption within the construction 
industry. A structured questionnaire was developed to collect quantitative data, with survey items 
adapted from validated UTAUT 2 measurement scales and modified to align with the construction and 
AI context. The questionnaire utilized a five-point Likert scale, where 1 indicated strong disagreement 
and 5 indicated strong agreement. The survey also included demographic information (age, gender, field 
of study, education level, and experience). The questionnaire comprised items that measured students' 
perceived usefulness of AI, anticipated ease of use, social and institutional support, personal 
enjoyment, and behavioural intentions toward AI adoption. 

3.1. Participants and Data Collection 

The data for this study were collected through an online survey administered via Google Forms, ensuring 
accessibility and ease of response. A QR code linking directly to the survey was generated and shared 
with the students during lectures and classes to encourage real-time participation. Additionally, the 
survey link was made available on the university’s educational platform (Blackboard) to ensure broader 
accessibility and to allow students to complete it at their convenience. The survey was distributed to 
undergraduate and postgraduate students enrolled in construction-related programs, including civil 
engineering, architecture, building surveying, quantity surveying, and construction project 
management. A total of 43 responses were collected. Regarding the ethical considerations, 
participation in the study was voluntary, and respondents were assured of confidentiality and 
anonymity. The study adheres to ethical research standards, obtaining informed consent from all 
participants. Data is stored securely, and participants' identities are protected throughout the research 
process. Although the survey was spread comprehensively, not many participants filled out the survey. 

3.2. Data Preparation and Cleaning 

Following the data collection phase, the survey responses were subjected to a comprehensive data 
cleaning and preparation process to ensure the validity, reliability, and suitability of the dataset for 
subsequent statistical analysis. Initially, all responses were screened for completeness. Surveys that 
were less than 80% complete were excluded from the dataset, as they lacked sufficient information to 
provide meaningful input to the analysis. Responses in which straight-lining was obvious were also 
removed from the dataset. These were identified by a consistent selection of the same answer choice 
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across all items within a section, suggesting a lack of attention or engagement. This step helped to 
maintain data quality and minimize potential biases that could arise from incomplete responses. Out 
of a total of 43 responses collected, 40 were selected for analysis. 

3.3. Reliability Testing 

Scale reliability was performed using Cronbach’s alpha to verify the internal consistency of the multi-
item constructs derived from the UTAUT 2 framework. This careful preparation ensured that the dataset 
was both clean and methodologically sound, providing a strong foundation for the subsequent 
statistical analyses and interpretation of the research findings. Table 3 shows the Cronbach’s Alpha for 
different constructs and all constructs pass the 0.70 threshold. 

Table 3: Cronbach’s Alpha for UTAUT 2 Constructs 

Construct Cronbach’s Alpha 

Performance Expectancy 0.88 

Effort Expectancy 0.83 

Social Influence 0.87 

Facilitating Conditions 0.84 

Hedonic Motivation 0.88 

Price Value 0.90 

Habit 0.86 

Behavioural Intention 0.92 

 

4. Results 

The analysis of the collected data offers valuable insights into the readiness and intention of 
construction students to adopt AI in their future professional practices. The data were carefully cleaned 
and prepared to ensure the integrity and completeness of the dataset. Normality was assessed through 
visual inspection of histograms. The distributions of most items were approximately normal, supporting 
the validity of subsequent parametric analyses.  

4.1. Descriptive statistics analysis 

descriptive statistics were computed for each survey item, including the mean, minimum, maximum, 
median, and standard deviation. The results provide insight into which aspects of AI adoption students 
perceive most positively and where potential gaps or challenges may exist. Table 4 presents the 
descriptive statistics of the extracted values through the questionnaire.   
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No of 
questions 

Survey Questions N Mean 
Std. 

Deviation 
Min Median Max 

1.  I believe that learning about AI tools will benefit me. 42 4.03 1.07 1 4 5 
2.  AI will help me make faster, more accurate decisions. 42 3.86 1.09 1 4 5 
3.  Understanding AI will enable me to contribute to … the 

construction industry. 41 3.93 1.06 1 4 5 

4.  AI tools can help solve common problems in 
construction projects. 

42 3.9 1.08 1 4 5 

5.  I believe that AI tools in construction will improve 
performance. 

41 3.51 1.14 1 3 5 

6.  I will be able to use AI technology in construction 
projects. 

40 3.6 1.08 1 3 5 

7.  The use of AI-based systems will require minimal 
training. 41 3.24 1.24 1 3 5 

8.  Interacting with AI tools will be useful in my work. 41 3.63 1.09 1 4 5 
9.  My peers believe that learning about AI is important. 41 3.88 0.9 2 4 5 
10.  I am motivated to learn about AI because my peers 

support it. 
42 3.6 1.01 1 3 5 

11.  I often hear that AI knowledge is becoming essential in 
construction. 42 3.67 1.07 1 4 5 

12.  The construction industry is increasingly interested in AI 
solutions. 

42 3.64 1.06 1 4 5 

13.  My university provides adequate resources for AI 
learning. 

42 3.29 1.2 1 3 5 

14.  There are sufficient online platforms and courses for AI in 
construction. 

42 3.43 1.11 1 3 5 

15.  My faculty offers adequate support for AI integration. 42 3.21 1 1 3 5 
16.  AI tools are integrated into my course curriculum. 42 2.98 1.21 1 3 5 
17.  I find learning about AI in construction to be exciting and 

engaging. 
41 3.9 0.97 1 4 5 

18.  I enjoy the challenge of using AI to solve construction 
problems. 

42 3.71 1.07 1 4 5 

19.  Exploring AI concepts and tools is a rewarding 
experience. 42 3.6 0.86 2 3 5 

20.  The benefits of learning AI in construction outweigh the 
costs. 

41 3.37 0.97 1 3 5 

21.  Understanding AI will provide me with a competitive 
advantage. 

42 3.71 1.09 1 4 5 

22.  AI tools in construction will likely save time and costs. 42 3.74 0.99 2 4 5 
23.  I am already using or exploring AI-based tools. 42 3.29 1.17 1 3 5 
24.  It has become second nature for me to look for AI-based 

solutions. 41 3.46 1.1 1 4 5 

25.  I believe I will frequently use AI-based solutions in the 
future. 

42 3.62 1.1 1 4 5 

26.  I intend to actively seek out AI-based solutions in my 
career. 

41 3.61 1.05 1 4 5 

27.  I am likely to adopt AI tools once I enter the construction 
industry. 42 3.71 0.86 1 4 5 

28.  I believe knowing AI will make me a more competitive 
professional. 

42 3.76 1.03 2 4 5 
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5. Discussion 

Across the survey items, almost all the mean scores ranged from 3.00 to 4.00 on a five-point Likert scale, 
indicating a generally positive orientation toward AI integration in construction. The highest-rated item 
was “I believe that learning about AI tools will improve my future performance in construction projects” 
(PE) with a mean score of 4.03, indicating strong agreement. This was followed by “Understanding AI will 
enable me to contribute to innovative solutions in the construction industry” (PE) (M = 3.95). These high-
scoring items reflect a clear recognition among students of the value and future importance of AI in 
enhancing performance and promoting innovation in the construction sector. Similarly, items 
addressing social influence and hedonic motivation, including perceptions of peer support and 
enjoyment derived from AI use, also demonstrated favourable responses, highlighting the influence of 
social and personal factors on students' readiness to engage with AI technologies. Conversely, the 
lowest-rated item was “AI tools are integrated into my course curriculum” (FC) with a mean of 2.98, 
suggesting that students perceive limited exposure to AI through formal education. Other low-scoring 
items include “My faculty offers adequate support in terms of AI integration” (FC) (M = 3.21) and “The 
use of AI-based systems will require minimal training” (EE) (M = 3.24). These results imply that while 
students are generally optimistic about the benefits of AI, they feel underprepared or under supported 
in terms of institutional readiness, training, and curriculum integration. 

To evaluate the correlation between the UTAUT2 constructs and BI to adopt AI in construction, a Pearson 
correlation analysis was conducted. The results revealed consistently strong positive correlations 
between BI and all seven constructs, underscoring the multidimensional nature of technology 
acceptance. PE demonstrated the strongest linear relationship with behavioural intention (r = 0.87), 
suggesting that students who perceive AI as enhancing their academic performance are significantly 
more likely to adopt it. PV (r = 0.85), EE (r = 0.83), SI (r = 0.82), and H (r = 0.83) also exhibited robust 
correlations, indicating that perceptions of affordability, ease of use, peer dynamics, and established 
usage patterns are critical determinants of adoption intent. FC (r = 0.80) and HM (r = 0.81) were similarly 
influential, reflecting the role of institutional support and intrinsic enjoyment in driving adoption. These 
findings validate the theoretical assumptions of the UTAUT2 framework and reinforce its applicability in 
examining behavioural drivers of AI integration within construction contexts. Table 5 presents the 
Pearson correlation coefficients between key UTAUT2 constructs and behavioural intention to adopt AI 
in construction 

Table 5: Pearson correlation coefficient between constructs and behavioural intention 

Construct  Pearson’s r with BI 

Performance Expectancy 0.87 

Price Value 0.83 

Effort Expectancy 0.82 

Habit 0.80 

Social Influence 0.81 

Hedonic Motivation 0.85 

Facilitating Condition 0.83 
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Potential limitations include self-selection bias, as individuals with strong opinions about AI may be 
more inclined to participate. Additionally, the reliance on self-reported data may introduce inaccuracies 
due to social desirability or recall bias. In addition, this survey was carried out with the built environment 
students in view, the 

Overall, the results reveal that construction students are generally receptive to AI technologies and 
perceive them as beneficial for future professional performance. However, the relatively moderate 
levels of current AI use among built environment students suggest that greater emphasis on AI exposure 
and practical application within the academic curriculum may be necessary to fully prepare students 
for the technological demands of the construction industry. The positive influence of social factors, 
including peer encouragement and industry trends, points to the potential effectiveness of collaborative 
learning and industry-academia partnerships in promoting AI adoption. These findings provide critical 
insights for educational institutions and construction industry stakeholders aiming to support the next 
generation of construction professionals in embracing AI-driven innovations. 

6. Conclusions 

This study examined construction students’ readiness and intention to adopt AI in their future careers 
using the UTAUT 2 model. While the construction industry is traditionally slow to adopt technology, 
students showed positive attitudes toward AI, especially valuing its potential to improve job 
performance and decision-making. Key factors influencing adoption intentions included performance 
expectancy and social influence. However, despite strong theoretical awareness, students had limited 
hands-on experience with AI tools, highlighting a need for more practical AI integration in construction 
education to break the stigma of slow adoption to technology. The findings of this study have significant 
practical implications for educators, academic institutions, and policymakers involved in shaping built 
environment curricula. By identifying current gaps in AI awareness, confidence, and training among 
architecture and construction students, the research provides insight for integrating AI into higher 
education programs. Enhancing digital readiness at the student level ensures that future professionals 
are better equipped to engage with emerging technologies. These insights can inform curriculum 
development, upskilling strategies, and institutional policies aimed at aligning education with the 
evolving demands of industry and sustainable urban development. This research directly contributes to 
SASBE 2025’s core themes of artificial intelligence and data science, while also supporting broader 
goals related to people-centred design, smart construction, and sustainable urban development 
through the lens of education and digital readiness in the built environment. The study’s survey was 
reliable, though limited by self-reported data and sample size. Future research should track AI adoption 
over time and explore educational interventions to better prepare students for AI-driven construction 
practices, ultimately supporting the industry’s technological advancement. 
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